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STUDIES IN LOGIC, GRAMMAR AND RHETORIC 27 (40) 2012

INTRODUCTION

This volume is dedicated to Professor Andrzej Grzegorczyk on the oc-
casion of his 90th birthday. It is rare to be able to pay respects to someone
who has reached this impressive age and is still actively involved in cre-
ative research. To wish “one hundred years,” as Polish tradition has it,
seems much too modest. We are happy that we can present to him this
volume, and we hope that Professor Grzegorczyk and ourselves will be able
to participate in a future project in which scholars who have been influ-
enced by him can present their research and reflections related to his fields
of activities.

Only a very brief outline of Grzegorczyk’s life and achievements is given
below. More detailed accounts can be found in the following two papers:
S. Krajewski and J. Woleński, “Andrzej Grzegorczyk: Logic and Philoso-
phy”, Fundamenta Informaticae 81, 1–3 (2007), pp. 1–10; S. Krajewski, “An-
drzej Grzegorczyk” (in Polish), Edukacja Filozoficzna 37 (2004), pp. 185–204
(also published in Polska filozofia powojenna III [Polish Postwar Philoso-
phy III ], ed. by W. Mackiewicz, Agencja Wydawnicza Witmark, Warszawa
2005, pp. 99–118).

∗
∗ ∗

Andrzej Grzegorczyk was born in Warsaw on August 22, 1922. World
War II interrupted his high school education, but he continued his studies in
a clandestine school system organized in occupied Poland. Then he studied
in a chemical college and attended clandestine classes in philosophy (given
by Władysław Tatarkiewicz) and logic (by Fr Jan Salamucha and Henryk
Hiż).

Grzegorczyk took part in the 1944 Warsaw uprising, and after the war
went to study at the Jagiellonian University in Cracow. He graduated in
philosophy, having written his master’s thesis, The Ontology of Properties,
and he then returned to Warsaw in 1946 where he became Tatarkiewicz’s

ISBN 978–83–7431–346–9 ISSN 0860-150X 7



Introduction

assistant and the secretary of Przegląd Filozoficzny (Philosophical Review).
He began research in the field of logic and foundations of mathematics,
and obtained his PhD at the University of Warsaw in 1950. His disserta-
tion, On Topological Spaces in Topologies without Points, was written under
the supervision of Andrzej Mostowski. Then he worked at the Institute of
Mathematics of the Polish Academy of Sciences, where he became a docent
in 1953 (the paper Some Classes of Recursive Functions served as a de facto
Habilitation dissertation), an associate professor in 1961 and a full professor
in 1972. He also lectured at the University of Warsaw, and in 1974 moved
to the Institute of Philosophy of the Polish Academy of Sciences where he
became the head of the Ethics Group in 1982; he retired in 1990. Married
to Renata Majewska, a professor at the University of Warsaw, Grzegorczyk
has two children and six grandchildren.

Active in organizing scholarly activities, Grzegorczyk headed the Logi-
cal Semester at the International Mathematical Center (the Banach Center)
of the Polish Academy of Sciences in 1973; he led a special project, “One
Hundred Years of the Lvov-Warsaw School”, in 1995–1997; he worked as an
assessor on the Executive Committee of the International Union of History
and Philosophy of Science, the Division of Logic, Methodology and Philos-
ophy of Science; and from 1999 to 2003 he served as the President of the
Committee of Philosophy of the Polish Academy of Sciences.

Grzegorczyk published popular books on logic and computability as well
as a widely used textbook: An Outline of Mathematical Logic, Fundamental
Results and Notions Explained in All Details. These all played an important
role in logical education in Poland – and also outside its borders, as his
popular books, the first presentations of the theory of computability for
a general public, were translated into Czech and Russian.

Grzegorczyk’s best known achievement, the so-called Grzegorczyk’s hi-
erarchy, was introduced in 1953. He described and investigated classes of
recursive functions obtainable by superposition, restricted recursion and
the operation of restricted minimum from some initial functions contain-
ing addition, multiplication and, in addition, for each class the appropriate,
more complicated, primitive recursive function. The resulting subrecursive
hierarchy fills the class of primitive recursive functions. Grzegorczyk also
co-authored (with Mostowski and Ryll-Nardzewski) a fundamental paper
about second-order arithmetic and the infinitary omega-rule.

During his career, Grzegorczyk studied computable real numbers, ax-
iomatic geometry based on the concept of solid, and the theory of Boolean
algebras. He showed how to interpret Lesniewski’s ontology as Boolean al-
gebra without zero and demonstrated the undecidability of the theory of
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Boolean algebras with the operation of closure. He investigated intuition-
istic logic, and a modal interpretation of Grzegorczyk’s semantics for in-
tuitionism leads to the system known in the literature as S4.Grz, defined
as S4 plus the formula �(�(A ⇒ �A) ⇒ A) ⇒ A, called Grzegorczyk’s
axiom.

Grzegorczyk’s recent contribution, the undecidability of the theory of
concatenation, has a philosophical motivation: studying formal systems
should be performed by operating on objects which are visually compre-
hensible. The most natural is the notion of text.

Grzegorczyk has always believed that logic is the morality of speech
and thought, something that is also applicable to moral discussions. Logic
conceived broadly, including the methodology of science, forms a basic com-
ponent of the intellectual attitude identified by Grzegorczyk as European
rationalism. It is rationalism open to the realm of values that makes it
possible to acquire reliable knowledge and advocate ethics in social rela-
tions. Logic appears from this point of view as a human affair. Interestingly,
Grzegorczyk opts for psychologism in logic: semantic relations are always
relations for someone and are mediated by language. As a result, for ex-
ample, paradoxes should not be interpreted as showing that our language
is inconsistent, but rather that our concepts and theoretical systems are
limited.

Grzegorczyk is a devout Roman Catholic who feels an affinity to Russian
Orthodox Christianity. He has always been highly independent in his views
and has expressed critical opinions about various policies of the Church.
His religious reflection is focused on the moral dimension of Christianity as
well as on its links with the European cultural tradition. According to him,
Christianity is deeply involved in the same values as European rationalism.
The history of Christianity (including its Biblical roots) can be considered
the history of how a sense and understanding of the world can be deepened
by contemplating the sacred and transcendent. In particular, Jesus provides
a moral pattern because he demanded and demonstrated coherent individual
testimony.

Grzegorczyk has applied his ethical views to the field of conflict reso-
lution, attaching special importance to the methods of non-violence, such
as those advocated by Mahatma Gandhi or Martin Luther King. He coop-
erated with leaders of non-violent movements. He was also one of the first
figures visible in Polish public life who took seriously ecological issues. Be-
fore it was widely understood in Poland, he popularized warnings made by
the Club of Rome that the resources of our planet are scarce and, therefore,
the idea of permanent growth is dangerous.

9
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Andrzej Grzegorczyk’s philosophical and axiological views have not be-
come as influential or even as known as their author expected. Still, his
achievements in logic, such as the Grzegorczyk hierarchy, the geometry of
solids, results about undecidability, results about second-order arithmetic,
the S4Grz system and semantics for intuitionistic logic, have secured his
place in the history of this field. Moreover, his results in concatenation the-
ory and, most recently, regarding propositional calculus with the descriptive
equivalence connective, provide an important addition to his signal achieve-
ments.

Kazimierz Trzęsicki, Stanisław Krajewski, Jan Woleński
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Zofia Adamowicz

A GENERALIZATION OF THE CONSISTENCY
PREDICATE

Abstract. We modify the usual arithmetical consistency predicate. We study
the behavior of our predicate in fragments of arithmetic. The definition of our
predicate depends on a formula J defining an initial segment and on a set Γ
of arithmetical formulas. We formulate conditions on J and on Γ under which
our predicate has the properties usually required from a consistency predicate.
As a result we obtain a well behaving consistency predicate. Suitably choosing
J and Γ we obtain a well behaving consistency predicate whose arithmetical
complexity is unusual, namely is Σ1.

1. Motivation

Our motivation is a deeper understanding of the independence phenomenon
in arithmetic. To this end we generalize the usual consistency predicate.
Since consistency is dual to provability, as well we may deal with provability.
On one hand we restrict some usual consistency predicate, like the Hilbert or
the Gentzen or the Herbrand consistency to some definable initial segment;
on the other hand we include into the theory whose consistency is considered
some set of true sentences. We study those properties of the initial segment
involved which guarantee that our consistency predicate behaves regularly,
including the Gödel phenomenon. We axiomatize those properties. Finally
we illustrate our considerations by showing a consistency predicate which
behaves regularly although it is Σ1 definable, not as usually Π1.

Restricting the consistency predicate to some definable initial segment
was already considered in the literature for instance by P. Pudlak [1985]. He
proved that as far as the Hilbert consistency predicate is concerned many
interesting restrictions to a cut still satisfy the Gödel independence phe-
nomenon; however as far as the Herbrand or Gentzen predicate is concerned
for many natural cuts this is not the case. A similar approach for Herbrand
consistency was studied carefully in [Adamowicz and Zdanowski, 2011]. Also
S. Feferman [1960] studied consistency predicates for which the second Gödel
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independence theorem failed. We go in a different direction than P. Pudlak
and S. Feferman.

The main theorem is formulated and proved in section 15. The last
section is devoted to an illustration of the main theorem by a special case
of it. The remaining sections are introductory.

2. Fragments of Arithmetic

Peano Arithmetic is the theory of the non negative part of a discretely
ordered ring together with the induction scheme:

∀x(φ(x) ⇒ φ(x+ 1)) ⇒ ∀xφ(x),

where φ runs over all formulas of the language.
This scheme is equivalent to its parameter version:

∀a
(

φ(a, 0)&∀x(φ(a, x) ⇒ φ(a, x+ 1)) ⇒ ∀xφ(a, x)
)

.

When the range of the formula φ is restricted to Σn formulas, we get the
fragment IΣn.

For n ≥ 1 this is considered as an strong fragment, for n = 0 this is
the theory IΣ0, which is considered as Weak Arithmetic. The distinction
between strong and weak refers to the provability of the totality of the
exponential function:

∀x∃y y = 2x,

where the notation y = 2x is an abbreviation of an arithmetical formula
defining the graph of the function 2x.

Let the above sentence be denoted by exp. We have

IΣ1 ⊢ exp,
and

IΣ0 6⊢ exp .
Note that a Σ0 formula, which is also denoted by ∆0, is a formula whose

quantifiers are all bounded.
Thus, the theory IΣ0 is more often denoted by I∆0.
One may also consider the theory I∆0 + exp, or intermediate theories

I∆0 + Ωn.
We define the following functions:

ω0(x) = x2,

12



A Generalization of the Consistency Predicate

ω1(x) = 2(log x)2 ,

ω2(x) = 22(log log x)2

,

ωi+1(x) = 2ωi(log x).

Note that ω1(x) = 2(log x)2 = (2log x)log x = xlog x and has an interme-
diate growth between polynomials xn, for a fixed n, and the exponential
function 2x.

By Ωi we mean the sentence stating the totality of the ωi function:

Ωi : ∀x∃y y = ωi(x),

where the notation y = ωi(x) is an abbreviation of an arithmetical formula
defining the graph of the function ωi(x).

We have

I∆0 + Ωi 6⊢ exp .
Hence the theories I∆0 + Ωn are weak fragments of artithmetic, while

I∆0 + exp is a strong fragment.
In a model M of I∆0 + Ωi exponentiation may not be total, hence

log(M) = {x ∈ M : M |= ∃2x} may be a proper initial segment. Similarly
the segment logn(M) = {x ∈ M : M |= ∃ expn(x)}, where logn denotes
the n times iterated logarithm (where log0(x) = x) and expn denotes the n
times iterated exponentiation, may be a proper initial segment.

For a model M of I∆0 we have M |= Ωi iff logi(M) is closed under
multiplication. Consequently, in a model of I∆0 + Ωi, logi+1(M) is closed
under addition, logi+2(M) is closed under successor and logi−k(M) is closed
under ωk.

Note that logk(M) is a Σ1 definable initial segment of M .
Assume 〈a, b〉 denotes the pair-number (a+b)(a+b+1)

2
.

3. Π2 axiomatizable fragments of arithmetic

The theory I∆0 may be axiomatized by Π1 sentences, namely

∀a, b
(

φ(a, 0)&∀x < b(φ(a, x) ⇒ φ(a, x+ 1)) ⇒ ∀x ≤ bφ(a, x)
)

,

where φ runs over ∆0 formulas.
The theories I∆0 + Ωn additionally require the axiom ∀x∃y y = ωn(x),

which is Π2. Similarly the axiom exp is Π2: ∀x∃y y = 2x. Hence I∆0 + Ωn,
I∆0 + exp are Π2 axiomatizable. Other examples of Π2 axiomatizable frag-
ments of arithmetic are theories stronger than I∆0+exp, e.g. I∆0+sup exp,

13
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where sup exp is an axiom stating the totality of the super exponential func-
tion, or I∆0 + ∀x∃y y = Fn(x), where Fn is the nth function in the Grze-
gorczyk hierarchy, [Grzegorczyk, 1953], or I∆0 + ∀x∃y y = Fα(x), where
Fα is the α’s function in the Grzegorczyk-Wainer hierarchy [Cichon and
Wainer, 1983].

Assume T is a Π2 axiomatizable theory. Let M |= T .

Definition 1

An element x ∈ M is syntactically Σ1 definable in M if there is a ∆0

formula θ, such that

M |= ∃y
(

θ(x, y)&∀x′, y′(〈x′, y′〉 < 〈x, y〉 ⇒ ¬θ(x′, y′))
)

.

An element x ∈M is Σ1 definable in M if there is a Σ1 formula η such
that M |= η(x)&∀x′(x′ 6= x⇒ ¬η(x′)).

Remark 2

An element x ∈M is syntactically Σ1 definable in M iff it is Σ1 definable
in M .

Proof.
Assume that x is syntactically Σ1 definable. Let η(x) be the formula

∃y
(

θ(x, y)&∀x′, y′(〈x′, y′〉 < 〈x, y〉 ⇒ ¬θ(x′, y′))
)

.

Then η is as required.
Assume conversely, that η is a Σ1 definition of x. Assume η is of the

form ∃yη′(x, y), where η′ is ∆0. Let θ(x, y) be η′(x, y)&∀y′ < y¬η′(x, y′).
Suppose for some x′, y′ ∈ M , we have 〈x′, y′〉 < 〈x, y〉 and θ(x′, y′). Then
either x′ 6= x or x′ = x and y′ < y. The second case contradicts the definition
of θ. In the first case M |= ∃yη′(x′, y), whence M |= η(x′), contradicting
M |= ∀x′(x′ 6= x ⇒ ¬η(x′)). Hence ∀x′, y′(〈x′, y′〉 < 〈x, y〉 ⇒ ¬θ(x′, y′)),
whence θ is as required in 1. �

Remark 3

If x is Σ1 definable in M , then w.l.o.g. we may assume that it is definable
by the formula ∃yθ(x, y), where θ is of the form θ′(x, y)&∀x′, y′(〈x′, y′〉 <
〈x, y〉 ⇒ ¬θ′(x′, y′)). Hence θ provably can have at most one witness.

Proof.
In 1 instead of θ we may take θ′(x, y)&∀x′, y′(〈x′, y′〉 < 〈x, y〉 ⇒

¬θ′(x′, y′)). �

14
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Definition 4

Let K(M) denote the set of those x in M which are Σ1 definable in M .
In K(M) we consider addition and multiplication inherited from M .

Theorem 5

K(M) ≺Σ1
M.

Proof.
Recall the Tarski Vaught criterium:

For M1 ⊆ M2 we have M1 ≺Σ1
M2 iff for any a1, . . . , an ∈ M1 and

η ∈ Σ1, whenever there is an x ∈ M2 such that M2 |= η(x, a1, . . . , an),
then there is an x ∈M1 such that M2 |= η(x, a1, . . . , an).

We apply this criterium.
So, assume a1, . . . , an ∈ K(M), η ∈ Σ1 and there is an x ∈ M such

that M |= η(x, a1, . . . , an). Assume η is of the form ∃yη′(y, . . .), where η′

is ∆0. Hence M |= ∃x, yη′(x, y, a1, . . . , an). Let η1, . . . , ηn define a1, . . . , an,
respectively and assume ηi is ∃yη′i. Assume that η′, η′1, . . . , η

′
n provably can

have at most one witness.
Thus,

M |= ∃x, y, y1, . . . , yn(η′(x, y, a1, . . . , an)&η
′
1(y1, a1)& . . .&η′n(yn, an)).

We have

M |= ∃u∃ã1, . . . , ãn, x̃, ỹ, ỹ1, . . . , ỹn ≤ u

(η′(x̃, ỹ, ã1, . . . , ãn)&η
′
1(ỹ1, ã1)& . . .&η′n(ỹn, ãn)).

Hence, for some x̃ ∈M ,

M |= ∃u∃ã1, . . . , ãn, ỹ, ỹ1, . . . , ỹn ≤ u

(η′(x̃, ỹ, ã1, . . . , ãn)&η
′
1(ỹ1, ã1)& . . .&η′n(ỹn, ãn)).

By the fact that η′i and η have at most one witness in M , we have
ã1 = a1, . . . , ãn = an and x̃ is Σ1 definable in M by the formula

∃u∃ã1, . . . , ãn, ỹ, ỹ1, . . . , ỹn ≤ u

(η′(x̃, ỹ, ã1, . . . , ãn)&η
′
1(ỹ1, ã1)& . . .&η′n(ỹn, ãn)).

Hence x̃ ∈ K(M) and M |= η(x̃, a1, . . . , an). Hence for some x ∈ K(M)
and M |= η(x, a1, . . . , an) and the Tarski Vaught criterium is fulfilled. �

Corollary 6

Every element of K(M) is Σ1 definable in K(M).

15
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Proof.
Let x ∈ K(M) and let η ∈ Σ1 define syntactically x. Then M |= η(x).

By Σ1 elementariness, K(M) |= η(x). �

Corollary 7

K(M) |= T .

Proof.
Let ∀x∃yη(x, y) be an axiom of T , where η ∈ ∆0. Let x ∈ K(M). Then,

M |= ∃yη(x, y). By Σ1 elementariness, K(M) |= ∃yη(x, y). �

Corollary 8

A Π2 axiomatizable theory T has a model which is pointwise Σ1 defin-
able, i.e. whose every element is Σ1 definable in it.

4. Coding of truth

Definition 9

Let x, t ∈ M , t ∈ {0, 1}x. We say that t codes the Σ1 truth of M if
x > N and for every sentence φ ∈ Σ1 we have

t(φ) = 1 iff M |= φ.

5. Existence of models whose Σ1 truth is not coded

Theorem 10

If M |= T is pointwise Σ1 definable, then Σ1(M) is not coded in M .

Proof.
Suppose the converse. Let x ∈ M be a code for Σ1(M). Let η be the

Σ1 definition of x. Then we have for φ running over Σ1 sentences:

φ iff ∀x(η(x) ⇒ φ ∈ x).

This gives a Π1 definition of the Σ1 truth, a contradiction with the Tarski
theorem. �

Theorem 11 [Wilkie and Paris, 1978]

Every model for I∆0 + BΣ1 has a Σ1 elementary submodel satisfying
I∆0 +BΣ1 whose Σ1 truth is not coded.

16



A Generalization of the Consistency Predicate

6. Maximal theories

Definition 12

A set of Σ1 sentences T# is maximal w.r.t. T if it is maximal consistent
with T .

Remark 13

A Π2 axiomatizable theory T has a model which is pointwise Σ1 defin-
able and satisfies a maximal theory T#.

Proof.
Let M |= T + T# and take K(M). �

7. Initial segments

I is an initial segment of M if I ⊆ M and for every x ∈ I, y ≤ x we have
y ∈ I. I is definable if there is a formula η such that I = {x ∈ M : M |=
η(x)}.

If I is definable we identify I with its definition.
Note that logk(M) is a Σ1 definable initial segment of M .
If a ∈ M is definable, then {x ∈ M : x ≤ a} is a definable initial

segment. If M |= PA then every definable initial segment of M is of this
form.

I is a cut if I is definable and is, provably in T , an initial segment and
I is provably closed under successor.

Note that logk is not a cut.
In the case where T = PA, there are no proper definable cuts.
In a model of I∆0 + Ωn or of I∆0 + exp, N may be a definable proper

initial segment.

Example 14

Let θ(x) be the formula expressing “x is the least proof of the inconsis-
tency of I∆0 + Ωn”. Let M |= I∆0 + Ωn + ∃xθ(x) and let a satisfy θ in M .
Assume that elements of the form ωn1 (a), for n ∈ N, are cofinal in M . Then
N is definable in M by the formula η(u):

∃x∃y(θ(x)&y = ωu1 (x)).

It is more difficult to show a model of I∆0+Ωn, where N is Π1 definable.

17
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8. Defining N

We assume that JT is a Σ1 or Π1 formula. We shall identify JT with the set
definable by the formula JT .

We assume the following:

Key properties
1) JT is an initial segment provably in T ,
2) N ⊆ JT provably in T

3) JT is N in some models of T .

9. What JT can be

Assume T ⊇ I∆0 + exp.
Consider the following formula NT,Σ1

(x) expressing the meaning that
there is a set (i.e. a characteristic function of a set) of size x consisting of
Σ1 sentences containing all true Σ1 sentences and x-consistent with T :

We may call NT,Σ1
(x), the amount of the codability of the Σ1 truth.

∃t ∈ {0, 1}x
(

∀ϕ < x(SatΣ1
(ϕ) ⇒ t(ϕ) = 1)

& the theory {ϕ < x : t(ϕ) = 1} is x-consistent with T
)

We can refine NT,Σ1
(x) so that it will be Π1 definable. Assume T con-

tains a Σ1 sentence η which is a Σ1 definition and is false in N. Assume η
is of the form ∃yη′(y). Consider the formula NT,Σ1

(x):

∀y∀w
(

η′(w) ⇒ ∃t ∈ {0, 1}x
(

t ≤ w&∀ϕ < x(SatΣ1
(ϕy) ⇒ t(ϕ) = 1)

& the theory {ϕ < x : t(ϕ) = 1} is x-consistent with T
))

This formula is Π1.
Dual

Consider the following formula NT,Π1
(x) expressing the meaning that

there is a set (i.e. a characteristic function of a set) of size x consisting of
Π1 sentences containing all true Π1 sentences and x-consistent with T :

We may call NT,Π1
(x), the amount of the codability of the Π1 truth.

∃t ∈ {0, 1}x
(

∀ϕ < x(SatΠ1
(ϕ) ⇒ t(ϕ) = 1)

& the theory {ϕ < x : t(ϕ) = 1} is x-consistent with T
)

This can be made Σ1.
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10. For what T , do NT,Π1
, NT,Σ1

have key properties?

Let T denote a Π2 axiomatizable consistent recursive theory containing
I∆0 + exp.

E.g. I∆0 + exp, I∆0 + Ω1. We may deal with the language containing
a constant a and we include into our theories the sentence ζ(a), where ζ is
a fixed ∆0 formula. In this case T usually is not a true theory, i.e. every
model of T is non standard.
• T has pointwise Σ1 definable models. Every model of T has a Σ1 ele-

mentary submodel pointwise Σ1 definable.
• T has models in which witnesses for true Σ1 sentences are cofinal.
• T has models in which the set Σ1(M) of true Σ1 sentences is not coded.

11. The key properties of NT,Π1
, NT,Σ1

Lemma 15

For every n ∈ N and every model M of T , M |= NT,Π1
(n), M |=

NT,Σ1
(n).

Lemma 16

For every theory T# ⊆ Σ1 which is maximal consistent w.r.t. T and
every model M of T + T# having the property that T# is not coded in M ,
NT,Σ1

defines N in M .
For every theory T# ⊆ Π1 which is maximal consistent w.r.t. T and

every model M of T + T# having the property that T# is not coded in M ,
NT,Π1

defines N in M .

Proof.
Let M satisfy the requirements of the first part of the lemma.
We shall show that NT,Σ1

defines N in M .
For, assume x ∈ N. Let t ∈ {0, 1}x be such that

t(ϕ) = 1 iff M |= SatΣ1
(ϕ).

Then t is as required in NT,Σ1
.

Assume now NT,Σ1
(x) and suppose x > N. Take the t ∈ M existing by

NT,Σ1
. Then the theory

{ϕ : M |= t(ϕ) = 1}
is consistent with T since

M |= the theory {ϕ < x : t(ϕ) = 1} is x-consistent with T .
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On the other hand this theory contains T#, since whenever ϕ is true
i.e. M |= SatΣ1

(ϕ), then t(ϕ) = 1.
So, by the maximality of T#, the theory

{ϕ : M |= t(ϕ) = 1}

equals T#. But so, t is its code on M , a contradiction.
For NT,Π1

the proof is similar. �

12. Provability and consistency

Let PrT (φ) express the meaning “there is a proof of φ in the theory
T”. The most known predicates Pr are “there is a Hilbert proof”, “there is
a Gentzen proof”, “there is a Herbrand proof”, there is a “Tableau proof”.
All these predicates are definable by Σ1 formulas of the form ∃xPrxT (φ),
where PrxT (φ) expresses the meaning “x is a proof of φ in the theory T”.

Dual to PrT (φ) is the predicate Cons(T + φ), defined as

Cons(T + φ) iff ¬PrT (¬φ).

Consequently, Cons(T + φ) is Π1 in each of the above cases.
If J is an initial segment of a model M of I∆0 + Ωn, then let PrJT (φ)

express the meaning “there is a proof belonging to J of φ in the theory T”.
Consequently, ConsJ(T + φ) expresses the meaning “there is no proof be-
longing to J of ¬φ in the theory T”.

If J is definable by a formula J(x), then PrJT (φ) can be defined as
∃x(J(x)&PrxT (φ). Similarly, ConsJ(T + φ) can be defined as ∀x(J(x) ⇒
¬PrxT (¬φ)).

Our focus will be on ConsJ(·) (consistency relativized to J), for some
definable initial segment J .

Assume T is recursive, consistent and contains I∆0.
Usually a predicate Cons(·) is considered as expressing consistency if

T is consistent iff N |= Cons(T ).

Let PrT (·) be defined as ¬Cons(T + ¬·).
Some other properties are usually expected, e.g. the Hilbert Bernays

derivability conditions:
• T ⊢ φ implies T ⊢ PrT (φ)
• T ⊢ (PrT (φ) ⇒ PrT (PrT (φ)))

• T ⊢
(

(PrT (φ)&PrT (φ⇒ ψ)) ⇒ PrT (ψ)
)
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Note two other useful properties:
• Cons(T )&PrT (φ) implies Cons(T + φ).
• If ConsJ(·) denotes Cons relativized to a definable initial segment J ,

then
Cons2J(T )&PrJT (φ) implies ConsJ(T + φ),

where 2J = {2x : x ∈ J}.
We shall call the above properties basic.

Later we shall consider some unusual consistency predicates ConsJ(·),
for some initial segments J .

13. Usual properties of consistency

Here we formulate the most important properties of the usual consistency
predicates like the Hilbert, Gentzen or Herbrand ones.
• Cons(·) is Π1

Σ1 completeness:
• T ⊢ (η ⇒ PrT (η)) for η ∈ Σ1

Gödel:
• T 6⊢ Cons(T );
• If T is true then T 6⊢ ¬Cons(T ) (note that T +¬Cons(T ) ⊢ ¬Cons(T+

¬Cons(T ))
• If θ ⇔ Cons(T + ¬θ) provably in T , then θ ⇔ Cons(T ) provably in T

14. Consistency over JT

Let Cons(·) denote the Hilbert or the Herbrand consistency predicate. As-
sume T ⊇ I∆0 +exp. Let Γ be a class of formulas, for instance, Γ can be Σ1

or Π1. Assume that we are given a formula SatΓ(·) universal for sentences
in Γ which itself is in Γ. Let Cons(· + Γ) mean the sentence stating the
following: for every sentence η in Γ, if SatΓ(η) holds, then Cons(T + η)
holds.

We consider consistency ConsJ(T + Γ) over an initial segment J = JT
depending on T . The definition of T is built into the definition of JT .

By ConsJT (T +Γ) we shall mean the sentence stating the following: for
every x ∈ JT and every sentence η in Γ such that η ∈ JT if SatΓ(η) holds,
then Consx(T + η) holds.

For a sentence φ, by ConsJT (T + Γ + φ) we shall mean a sentence
stating the following: for every x ∈ JT and every sentence η in Γ such that
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η ∈ JT if SatΓ(η) holds, then Consx(T + η) holds and if η&φ ∈ JT , then
Consx(T + η + φ) holds.

We assume that JT is Γ definable and has the key properties. Below,
we see that the usual properties of consistency from section 13 generalize to
this case.

15. Consistency with true Γ sentences

Theorem 17

Assume T is a recursive consistent theory containing I∆0. Let Γ be a re-
cursive set of formulas. Let JT be a formula in Γ having the key properties,
i.e.
1. JT is an initial segment provably in T ,
2. N ⊆ JT provably in T
3. JT is N in some models of T .

Assume that there is a universal formula SatΓ(·) available in T , which
is itself in Γ and is universal for sentences in Γ. We assume that Γ is closed
under conjunction, double negation and has enough closure properties so
that ConsJT (T + Γ + ·), defined in section 14, and the Gödel sentence θ
equivalent in T to ConsJT (T + Γ + ¬θ) are in ¬Γ.

Then ConsJT (T + Γ + ·) has the following properties:
• T ⊢ φ implies T ⊢ PrJT

T,Γ(φ)
The Γ completeness:
• T ⊢ (η ⇒ PrJT

T+Γ(η)) for η ∈ Γ
The Gödel properties:
• T 6⊢ ConsJT (T + Γ)
• T 6⊢ ¬ConsJT (T + Γ)

• If θ ⇔ ConsJT (T + Γ + ¬θ) provably in T , then θ ⇔ ConsJT (T + Γ)
provably in T

Proof.
The Γ completeness is immediate. Let us focus on the Gödel properties.

Lemma 18

Let θ be the diagonal sentence such that

T ⊢ (θ ⇔ ConsJT (T + Γ + ¬θ)).
Call θ the Gödel sentence.

Then
T ⊢ (θ ⇔ ConsJT (T + Γ)).
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Proof.
Work in T . Assume θ. Then ConsJT (T +Γ+¬θ), whence, in particular,

ConsJT (T +Γ). Assume ConsJT (T +Γ). Suppose ¬θ. Since ¬θ is Γ we infer
ConsJT (T + Γ + ¬θ), whence θ. �

Corollary 19

T 6⊢ ConsJT (T + Γ).

Proof.
We shall prove that T 6⊢ ConsJT (T + Γ). Suppose the converse. Let θ

Gödel sentence. Then, by 18, T ⊢ θ. Let M be a model of T . Then M |= θ.
Thus, M |= ConsJT (T + Γ + ¬θ). Since JT

M ⊇ N, the theory T + ¬θ is
consistent. But on the other hand T ⊢ θ. Contradiction. �

Corollary 20

The sentence ConsJT (T + Γ) is independent from T .

Proof.
To see that the theory T + ConsJT (T + Γ) is consistent it suffices to

observe that is is true in every model M of T in which JT
M = N. On the

other hand, T + ¬ConsJT (T + Γ) is consistent, by 19. �

Thus, the theorem follows. �

16. Consistency which is Σ1

Here we illustrate our general considerations on the predicate ConsJT (T +

Γ + ·) by considering the case where T is S +BΣ1, where S is a Π2 axiom-
atizable fragment of arithmetic including I∆0 + exp+ζ, where ζ is a Σ1

sentence false in N, Γ is the class of Π1 sentences and JT is Π1 definable,
e.g. JT = NT,Σ1

. We have the following properties:

• T ⊢ φ implies T ⊢ PrJT

T,Π1
(φ)

• ConsJT (T + Π1 + ·) is Σ1

Π1 completeness

• T ⊢ (η ⇒ PrJT

T+Π1
(η)) for η ∈ Π1

Gödel:

• T 6⊢ ConsJT (T + Π1)

• T 6⊢ ¬ConsJT (T + Π1)

• If θ ⇔ ConsJT (T + Π1 +¬θ) provably in T , then θ ⇔ ConsJT (T + Π1)

provably in T
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ENTANGLEMENT OF N DISTINGUISHABLE
PARTICLES

Abstract. In their 2002 article, Ghirardi, Marinatto and Weber proposed a for-
mal analysis of the entanglement properties for a system consisting of N distin-
guishable particles. Their analysis leads to the differentiation of three possible
situations that can arise in such systems: complete entanglement, complete non-
entanglement, and the remaining cases. This categorization can be extended by
adding one important possibility in which a system is completely entangled, and
yet some of its subsystems are mutually non-entangled. As an example I present
and discuss the state of a three-particle system which cannot be decomposed
into two non-entangled systems, and yet particle number one is not entangled
with particle number three. Consequently, I introduce a new notion of utter en-
tanglement, and I argue that some systems may be completely but not utterly
entangled.

Keywords: entanglement, composite systems.

1.

The notion of entanglement remains at the centre of the foundational anal-
ysis of quantum mechanics. To date, one of the most comprehensive studies
of mathematical and conceptual features of quantum entanglement in var-
ious settings is the 2002 paper co-authored by G. Ghirardi, L. Marinatto
and T. Weber 2002 (other, more recent surveys of quantum entanglement
can be found in [Horodecki et al., 2009; Amico et al., 2008]. One section of
this extensive article has been devoted to the analysis of the entanglement
relations that can occur in a system containing N distinguishable particles.
Because N particles can remain in different entanglement settings relative to
one another, we need to distinguish various types of entanglement relations
that may emerge in the entire composite system. Ghirardi, Marinatto and
Weber (henceforth referred to as GMW ) formulate precise mathematical
definitions of such possible categories of entanglement, including cases of
complete entanglement and complete non-entanglement. However, it turns
out that their categorization is not exhaustive. This article contains an at-
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tempt to amendGMW ’s analysis by adding one special case of entanglement
of N distinguishable particles.

In the first section I briefly outline the original method of analysing
possible correlations among N particles proposed by GMW . The second
section sketches a proof, missing from GMW ’s article, that their procedure
is consistent. In the third section I present a case of a three-particle sys-
tem prepared in a state such that although the system as a whole cannot
be bipartitioned into two non-entangled subsystems (and hence qualifies
as completely entangled), two particles within the system are arguably not
entangled with one another. An interesting physical realisation of such a sit-
uation is provided by interpreting the states of the particles as consisting of
spatial and internal (e.g. spin) degrees of freedom. In that case the math-
ematical form of the initial state implies that particles 1 and 2 have their
spins entangled, while the entanglement of particles 2 and 3 affects only
their positions. In the fourth section I argue that this new case cannot be
classified with the help of another distinction introduced by GMW between
partially and totally entangled systems. To categorize it, I introduce a new
notion of utter entanglement, showing that complete entanglement does not
have to be utter.

2.

Following GMW , our main goal will be to categorize all possible entan-
glement relations that may arise in a composite system consisting of N
distinguishable particles. The starting assumption is that the system S is
prepared in a pure state described by the vector |ψ(1, . . . , N)〉 (thus, in
this paper I will ignore the important problem of how to classify entangled
mixed states of many particles) This state, in turn, determines the states
of all subsystems of S, which are obtained by reducing |ψ(1, . . . , N)〉. The
general method of getting the reduced states is by applying the partial trace
operation to |ψ(1, . . . , N)〉. Thus, the subsystem S(1...M) consisting of par-
ticles 1, 2, . . . ,M , where M < N , will be assigned the state represented by
the following density operator

ρ(1...M) = Tr(M+1...N)(|ψ(1, . . . , N)〉〈ψ(1, . . . , N)|)
where TrM+1...N) is the partial trace calculated over the spaces correspond-
ing to the particles M + 1, . . . , N . It is worth noting that the state assigned
to a given subsystem S(1...M) is independent from what system S(1...M)

is considered to be a subsystem of. That is, if we decide first to calculate,
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using the above formula, the reduced density operator for a bigger subsys-
tem consisting of particles 1, . . . ,M,M + 1, . . . ,K, and then we apply the
same procedure to reduce the resulting state to the subsystem S(1...M), the
final state will be precisely the same as above. This follows directly from
the fact that the application of two partial trace operations is equivalent to
one partial trace operation over the sum of both systems associated with
the separate trace operations.

The first question we have to ask with respect to the global entangle-
ment of S is whether it is possible to decompose it into two subsystems such
that they are not entangled with each other. There are several equivalent
ways of presenting the condition of non-entanglement between two subsys-
tems containing particles 1, . . . , N and N + 1, . . . ,M . The most popular
definition of non-entanglement is based on the factorizability condition.

Definition 1

The subsystem S(1...M) is non-entangled with the subsystem S(M+1...N)

iff there exist vectors |λ(1, . . . ,M)〉 and |φ(M+1, . . . , N)〉, representing pos-
sible states of S(1...M) and S(M+1...N) respectively, such that |ψ(1, . . . , N)〉 =

|λ(1, . . . ,M)〉 ⊗ |φ(M + 1, . . . , N)〉.

Another possible definition of non-entanglement uses the notion of the
reduced state.

Definition 2

The subsystem S(1...M) is non-entangled with the subsystem S(M+1...N)

iff the reduced density operator ρ(1...M) is a projection operator onto a one-
dimensional subspace of the space H1 ⊗H2 . . . ⊗HM . (ρ(1...M) can be pre-
sented as |λ(1, . . . ,M)〉〈λ(1, . . . ,M)|.

Other equivalent definitions of non-entanglement are possible too, but
we won’t write them down, referring the reader to literature 1 instead.1

The procedure used by GMW in order to analyze the entanglement
of the composite system S consisting of N particles is quite straightfor-
ward. First, we have to check whether it is possible to split S into two

1 The main definition of non-entanglement given in [Ghirardi et al., 2002, p. 68] refers
to the existence of a one-dimensional projection operator characterising the subsystem
S(1...M), whose expectation value in the initial state is 1. Definitions of non-entanglement
based on the notion of the Schmidt number and von Neumann entropy are mentioned
in [Ghirardi, 2004, p. 012109–4]. Another popular criterion of non-entanglement is that the
trace operator of the square of the reduced density operator should equal one (cf [Barnett,
2009, p. 50]).
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non-entangled subsystems S′ and S′′. If this can be done, then the proce-
dure has to be repeated for each of the subsystems S′ and S′′ in order to
bipartition them into even smaller subsystems not entangled with one an-
other, if possible. That way we can arrive at the finest partitioning of S into
several independent subsystems S1, S2, . . . , Sk such that none of the subsys-
tems Si is further decomposable into non-entangled components. Now, two
possibilities have to be considered. One is that the systems S1, S2, . . . , Sk
may turn out to be one-particle systems. This means that the initial system
S is completely unentangled, and each particle constituting it has its own
pure state. In other words, the state vector |ψ(1, . . . , N)〉 can be presented
as the product of N vectors each belonging to a one-particle Hilbert space.
But it is also possible that S does not have any non-entangled subsystems,
i.e. there is only one system in the set of non-decomposable subsystems
S1, S2, . . . , Sk, and this system is S itself. In this case S is said to be com-
pletely entangled.2

This distinction can be conveniently presented as follows. In accordance
with the adopted notation let k be the number of mutually non-entangled
subsystems of S which are not decomposable into further non-entangled
parts. Then, if k = N , the system S is completely non-entangled, and if
k = 1, S is completely entangled. If k falls between 1 and N , we have a case
in which S is decomposable into non-entangled composite subsystems which
themselves are completely entangled.

3.

It turns out, however, that the above analysis has to be amended in two
respects. First, let us start with a relatively minor issue. We have to make
sure that the procedure of identifying the smallest entangled components
of a given system is consistent, i.e. that it leads to a unique outcome which
is independent of the initial separation into two non-entangled subsystems.
The uniqueness property can be argued for as follows. Suppose that it is
possible to make two bipartitions of S into subsystems SK and SK′ and
into subsystems SL and SL′ and that both pairs SK , SK′ and SL, SL′ are
mutually non-entangled. To ensure the uniqueness of the procedure of sepa-
ration into smallest non-entangled components of S, we have to prove that
the subsystems SKL = SK ∩ SL, SKL′ = SK ∩ SL′ , SK′L = SK′ ∩ SL,

2 Completely entangled states are called “N-partite entangled” in [Horodecki et al.,
2009, p. 890].
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SK′L′ = SK′ ∩SL′ are also mutually non-entangled. That way we can argue
that no matter which initial bipartition we start with, we will end up with
the same decomposition into the smallest mutually non-entangled subsys-
tems of the system S.

A proof of the above-mentioned fact can be sketched as follows. By
assumption the initial state of the system S factorizes into the product of
the components describing the states of SK , SK′ and SL, SL′ respectively:

|ψ(1, . . . , N)〉 = |ψ〉K |ψ〉K′ = |ψ〉L|ψ〉L′

Now we can write down the Schmidt decompositions for the vectors |ψ〉K
and |ψ〉K′ in the bases of subsystems SKL, SKL′ and SK′L, SK′L′ .

|ψ〉K =
∑

n

an|λn〉KL|φn〉KL′

|ψ〉K′ =
∑

l

bl|χl〉K′L|µl〉KL′

The state vector of the system S can be thus presented as follows:

ψ(1, . . . , N)〉 =
∑

nl anbl|λn〉KL|φn〉KL′ |χl〉KL′ |µl〉K′L′

But we know that |ψ(1, . . . , N)〉 factorizes into the direct product of
vectors |ψ〉L and |ψ〉L′ . This is possible only when all coefficients an and bl
but one equal zero. But in this case clearly |ψ(1, . . . , N)〉 decomposes into
the product of four vectors, describing the states of the subsystems SKL,
SKL′ , SK′L, and SK′L′ . Therefore these subsystems are not entangled.

4.

However, the analysis proposed by GMW can benefit from the following
amendment. It turns out that even if the system S is not fully decompos-
able into two non-entangled subsystems, there may be some ‘pockets’ of
mutually non-entangled subsystems within S left. This is possible, because
when a given subsystem S′ receives a reduced density operator ρ′ as the
representation of its state, ρ′ may turn out to be the product of two den-
sity operators ρ′1 and ρ′2 each representing the state of one subsystem of
S′. In such a case the subsystems are deemed non-entangled (cf. [Barnett,
2009, p. 52]).

It has to be noted, though, that GMW start their analysis with
a slightly different concept of non-entanglement based on the notion of pos-
sessing a complete set of properties by the separate components of a system.
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This concept cannot be directly applied to a composite system whose state
is not pure, because in this case its components can never possess complete
sets of properties. This may be one reason why GMW chose not to con-
sider the above-mentioned case in which the impure state of a subsystem S′

factorizes into the product of two density operators. However, at the end of
their extensive paper they briefly consider the case of non-pure states [Ghi-
rardi et al., 2002, pp. 119–120], and they present a simple argument showing
that if the state of a system of two particles is a statistical mixture of fac-
torized states, then no violation of Bell’s inequality can occur in this state.
Because violation of Bell’s inequality is taken as indicative of entanglement,
I will continue to classify the cases in question as non-entanglement.

Below I will present and carefully examine a particular example
of such a situation. This example involves three particles whose state
spaces are four-dimensional Hilbert spaces spanned by orthonormal vectors
|0〉, |1〉, |2〉, |3〉. The considered state of the system S is given as follows:

(⋆) |ψ(1, 2, 3)〉 = 1
2
(|0〉1|1〉2|2〉3 + |0〉1|3〉2|0〉3 + |1〉1|0〉2|2〉3 + |1〉1|2〉2|0〉3)

We can now calculate the reduced density operators for particles 1, 2 and 3
separately.

ρ1 = Tr(2,3)(|ψ(1, 2, 3)〉〈ψ(1, 2, 3)|) = 1
2
(|0〉〈0| + |1〉〈1|)

ρ2 = Tr(1,3)(|ψ(1, 2, 3)〉〈ψ(1, 2, 3)|) = 1
4(|0〉〈0| + |1〉〈1| + |2〉〈2| + |3〉〈3|)

ρ3 = Tr(1,2)(|ψ(1, 2, 3)〉〈ψ(1, 2, 3)|) = 1
2(|0〉〈0| + |2〉〈2|)

Clearly, all reduced one-particle states are mixed rather than pure, and
therefore the system S cannot be decomposed into non-entangled subsys-
tems. However, let us now calculate the reduced density operator for the
two-particle subsystem S(1,3):

ρ1,3 = Tr(2)(|ψ(1, 2, 3)〉〈ψ(1, 2, 3)|) =

1
4
(|0〉11〈0|⊗|2〉33〈2|+|0〉11〈0|⊗|0〉33〈0|+|1〉11〈1|⊗|2〉33〈2|+|1〉11〈1|⊗|0〉33〈0|)=

1
4(|0〉11〈0| + |1〉11〈1|) ⊗ (|2〉33〈2| + |0〉33〈0|) = ρ1 ⊗ ρ3

Because the reduced state ρ1,3 is the product of the states of particle
1 and 3, it has to be concluded that 1 is not entangled with 3. Thus we
have an interesting case of entanglement here. Particle 1 is entangled with
the subsystem containing particles 2 and 3, but this entanglement affects
only the relation between 1 and 2, not 1 and 3. In particular, no non-local
correlations can be detected between outcomes of measurements performed
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on particles 1 and 3. Similarly, the entanglement of particle 2 with the two-
particle system {1, 3} arises entirely in virtue of the entanglement between 2
and 3. It can be verified by analogous calculations that particle 1 is entangled
with 2, and 2 is entangled with 3, as neither reduced density operator ρ1,2

nor ρ2,3 factorizes. But clearly the relation of entanglement is not transitive,
hence 1 and 3 may be, and actually are, non-entangled.

The state |ψ(1, 2, 3)〉 can be given a suggestive physical interpretation
when we identify the vectors with states having both internal and spatial
degrees of freedom. Let us assume that the particles can be characterized
by their spin-half values up (| ↑〉) and down (| ↓〉), and by their two possible
locations left (|L〉) and right (|R〉). In addition, let us make the following
identifications:

|0〉 = |R〉| ↑〉

|1〉 = |R〉| ↓〉

|2〉 = |L〉| ↑〉

|3〉 = |L〉| ↓〉

Under this interpretation the initial state of the system (⋆) can be
rewritten in the form of the following vector:

(⋆⋆) |ψ(1, 2, 3)〉 = 1
2
|R〉1(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2)(|R〉2|L〉3 + |L〉2|R〉3)| ↑〉3

The mathematical form of the above vector already suggests the inter-
pretation according to which the spins of particles 1 and 2 and positions
of particles 2 and 3 are entangled, while particle 1 has a precise location
and particle 3 has a precise spin. Calculation of reduced density matrices
confirms this observation:

ρ1 = |R〉〈R|(1
2
| ↑〉〈↑ | + 1

2
| ↓〉〈↓ |)

ρ2 = 1
4
(|R〉〈R| + |L〉〈L|)(| ↑〉〈↑ | + | ↓〉〈↓ |)

ρ3 = (1
2 |R〉〈R| + 1

2 |L〉〈L|)| ↑〉〈↑ |
The reduced state for particle 1 is a mixture of spins but its location

is precisely R, whereas particle 3 has the precise spin up, but its location
is a mixture of R and L. Particle number 2 has neither spin nor position
well-defined. Particle 2 is entangled both with 1 (via spins) and with 3 (via
positions). But no direct entanglement between particles 1 and 3 is present.
By looking at the formula (⋆⋆) we can immediately see that a measurement
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of spin on particle 1 changes non-locally the spin state of particle 2 (forcing
it to admit one of the two definite values depending on the outcome), but
doesn’t affect the state of particle 3. On the other hand, a position mea-
surement performed on particle 3 affects the position of particle 2 without
influencing in any way the reduced state of particle 1.

5.

It may be observed that the entanglement between system S1 and system
S(2,3), as well as between S3 and S(1,2), is of the type that GMW call partial
entanglement (cf. [Ghirardi et al., 2002, p. 69]). The general definition of
partial entanglement is as follows.

Definition 3

The subsystem S(1...M) is partially entangled with the subsystem
S(M+1...N) iff the range of the reduced density operator ρ(1...M) is a proper
submanifold (whose dimensionality is greater than one) of the total state
space H1 ⊗H2 ⊗ . . .⊗HM .

If definition 3 is satisfied, the entangled systems can be ascribed some
definite properties in the form of projection operators which are projecting
onto a subspace which is more than one-dimensional, but does not coincide
with the entire state space. In our case the range of the operator ρ1 de-
scribing the state of the first particle is a proper subset of the entire state
space, as it coincides with the product of the entire spin space and the
one-dimensional ray spanned by vector |R〉. Analogously, the range of ρ3

is the product of the whole two-dimensional position space and the one-
dimensional ray spanned by | ↑〉. Consequently, particle 1 is only partially
entangled with the remaining subsystem, and so is particle 3. In contrast
with this, the density operator ρ2 for particle number 2 has its range identi-
cal with the product of two entire spaces for spins and positions. As a result,
no definite property can be associated with this system, and in GMW ’s ter-
minology particle 2 is totally (i.e. not partially) entangled with the system
consisting of particles 1 and 3.

However, it would be incorrect to claim that the special character of the
entanglement of the state (⋆⋆) can be fully expressed by categorizing it as
a case of complete but not total entanglement. It can be easily verified that
there are completely and not totally entangled states which nevertheless
lack the unique feature of the state (⋆⋆), i.e. the non-entanglement of some
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small subsystems within the entire completely entangled system. Consider,
for instance, the following three-particle state:

|ψ(1, 2, 3)〉 = 1√
2
(| ↑〉1| ↑〉2| ↑〉3 + | ↓〉1| ↓〉2| ↓〉3)|A〉1|B〉2|C〉3

where A,B,C denote three distinct locations. It is clear that the three par-
ticles are not totally entangled, as their positions are well-defined, and yet
each particle is entangled with any other particle (the spin measurement on
any particle changes the state of the remaining two). In order to distinguish
this case from the cases similar to (⋆⋆), we should introduce a new category
of entanglement – let’s call it utter entanglement – with the help of the
following definition.

Definition 4
A composite system S is utterly entangled iff S is completely entangled

and for every proper subsystem S′ of S, its state ρ′ cannot be written in the
form ρq ⊗ ρb, where ρa and ρb are states of the subsystems composing S′.

As we know from the above-mentioned example, there are states which
are completely but not utterly entangled. The impossibility of dividing a sys-
tem S into two non-entangled subsystems does not imply that every sub-
system of S is entangled with every other subsystem.

In order to clarify better the physical meaning of the concept of utter
entanglement as expressed in definition 4, let us focus our attention on
its complement, i.e. the notion of complete but not utter entanglement.
As I explained earlier, this type of entanglement arises in a multipartite
system S when it is impossible to partition it into two subsystems each
characterized by its own pure state, and yet there is a subsystem S′ whose
state (mixed, not pure) factorizes into a product of two density operators.
This means that the subsystems Sa and Sb jointly composing the larger
subsystem S′ are effectively separated from one another, even though they
are not separated from the remaining particles in system S. This separation
can be best characterized in terms of the lack of non-classical correlations
between measurements on one system and the physical state of the other
system. The measurement on system Sa which projects its initial state onto
any vector within the range of the operator ρa leaves the other system in
the same initial state ρb.

This general observation can be illustrated with the help of the state
defined in (⋆). The state in which particle 1 will be found after a particular
measurement can be written in its most general form as a|0〉 + b|1〉, where
|a|2 + |b|2 = 1. The resulting state of the remaining two particles can be
shown to be the following (up to the normalization constant):
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a∗|1〉2|2〉3 + a∗|3〉2|0〉3 + b∗|0〉2|2〉3 + b∗|2〉2|0〉3
It is now easy to observe that the reduced density operator for particle 3

calculated with the help of the above state is precisely the same as before the
measurement. Hence no non-classical connection exists between particles 1
and 3. Due to the separation of particles 1 and 3, other non-classical phe-
nomena, such as the violation of Bell’s inequality or entanglement swapping,
are also impossible to produce. On the other hand, particle 2 clearly assumes
a new state after the measurement, which is now the equally weighted mix-
ture of states a∗|1〉+b∗|0〉 and a∗|3〉+b∗|2〉. Thus a non-classical correlation
between particles 1 and 2 is present.

It may be suggested that my definition of non-utter entanglement should
be corrected in order to include cases in which the state of the subsystem S′

is a mixture of products of density operators
∑

ij Pijρ
i
aρ
j
b, where

∑

ij Pij =
1. Such states are commonly referred to in the literature as “correlated
but not entangled” (cf [Barnett, 2009, pp. 52–53]). However, in our case
such a modification would lead to unacceptable conclusions. Consider, for
instance, the well-known GHZ state:

1√
2
(|0〉1|0〉2|0〉3 + |1〉1|1〉2|1〉3)

In this state each pair of particles is assigned the following mixture as its
reduced state:

1
2(|0〉〈0| ⊗ |0〉〈0| + |1〉〈1| ⊗ |1〉〈1|)

which would incorrectly imply that no two particles in the GHZ state are
mutually entangled. But in fact the entanglement between any two particles
is clearly present because a measurement on one of them can change the
state of the remaining two. In my opinion the decision to categorize mix-
tures of density operators as non-entangled states is justified when we limit
ourselves to proper mixtures, i.e. ensembles of particles prepared in different
but unknown states. In this case the change of the state of one component
of the system brought about by a measurement on another component can
be interpreted as a mere change in our knowledge about the real state of
the system. However, the mixed state assigned to a subsystem by taking
the partial trace of the state of a larger system does not admit an ignorance
interpretation. In this case it is better not to classify mixtures of products
of density operators as non-entangled.

In conclusion, we can distinguish the following categories of entangle-
ment which can occur in a system consisting of N distinguishable particles.
To begin with, the system can be completely unentangled, which means that
its state is a direct product of N states of separate particles. If the system
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can be split into k subsystems (k < N) which are mutually non-entangled
but cannot be further divided into non-entangled components, this is a case
of incomplete entanglement. A system which cannot be divided into two
non-entangled subsystems is called completely entangled. Within the cate-
gory of completely entangled systems we can distinguish systems which are
not utterly entangled, i.e. such that they still contain two or more subsys-
tems (which however do not jointly compose the entire system) which are
not entangled with one another. The last category of entanglement is utter
entanglement, which means that every subsystem is entangled with every
other subsystem. Finally, it should be added that the concept of total en-
tanglement as presented above is orthogonal to the introduced distinctions.
That is, each of the above-mentioned cases of entanglement can be a case
of total or partial entanglement.
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A NEO-FREGEAN THEORY OF OBJECTS AND
FUNCTIONS

Abstract. Aside from the most well-known semantic postulates underlying
classical logic, the main postulate of Frege’s philosophy of logic is the onto-
logical principle that there are exactly two logical types of entities, functions
and objects. The aim of this paper is to reconstruct a neo-Fregean theory which
implements this principle in the simplest possible way and to examine the philo-
sophical properties of this theory. Indicated and formalized here the so called
NOF-theory has the following properties: (1) The only existential assumption
of the logic underlying the NOF is the thesis of the existence of at least one
object and at least one unary function. (2) The only non-tautological axiom of
NOF is the thesis that two arbitrarily chosen objects are different from each
other. It is also one of the axioms of Tarski-Grzegorczyk’s theory of concatena-
tion (TC). (3) A nominalistic interpretation of the NOF is acceptable, where all
functions are determined in the field of linguistic expressions. (4) The concepts
of class, of membership and equinumerosity are definable in the NOF. (5) The
monadic second-order logic (MSO) is interpretable in the NOF. (6) In the NOF-
formalization of Tarski-Grzegorczyk’s theory – in contrast to the normal version
of this theory (TC) – the concept of sequence is definable.

1. What is the neo-Fregean theory of objects and functions?

As we know from the history and philosophy of logic, the first clear formula-
tion of the main semantic principles defining classical logic – the principles
of bivalence, compositionality of extensions, and non-emptiness of names
– are all derived from Gottlob Frege. Less known is the fact that the fol-
lowing ontological postulate occurs among the specific principles of Frege’s
philosophy of logic.

(O) There are exactly two logical types of entities (i.e. values of the quan-
tified logical variables): functions (“unsaturated” entities) and objects
(arguments of functions).

The first clear articulation of the idea of logicism also comes from Frege.
According to the articulation, arithmetic based on natural numbers like fi-
nite cardinals is derivable from classical logic and some meaning postulates.
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Among these postulates, the most important role is played by the so called
Hume’s Principle (the term was introduced by George Boolos), which states
that the powers of two classes are equal if and only if the classes are equinu-
merous. The methodological and philosophical status of the postulate has
become a main theme of reflections and discussions in neo-Fregean philo-
sophy of mathematics in recent decades.1 These reflections and discussions
alone – regardless of the evaluation of the results – clearly show that the
concept of equinumerosity is a key component of Fregean foundations for
mathematics.

These observations suggest that at the heart of the neo-Fregean philos-
ophy of mathematics is a second order theory in which: a) there are exactly
two types of quantified variables, object (individual) variables and one-place
function variables, and b) the concept of equinumerosity is expressible. Frege
did not assume (as far as I know) that the category of many-place functions
were derivable from the category of one-place functions. However, this as-
sumption provides the simplest way to formalize the postulate (O). It is
also compatible with contemporary set-theoretic logicism, i.e. the widely
accepted programme of reducing mathematics to standard set theory (since
many-place functions are defined in the theory as a special kind of one-place
function). The purpose of this paper is to simply reconstruct the suggested
neo-Fregean theory of objects and functions, meaning: NOF, and to give
a description of some of their philosophical properties.

2. Formalization of NOF-theory

NOF-language is the result of the reduction of “functional” second order
logic on its extra-logical constants to a set of only two names, “1” and “0”.
Intuitively, these names denote two arbitrarily chosen objects. In more de-
tail, the alphabet (of the NOF-language) consists of the following symbols.
1. Logical connectives: ¬,∧,∨,⇒,⇔.
2. Identity predicate: =.
3. Logical quantifiers: ∃,∀.
4. Names: 0,1.
5. Object variables: x1, x2, . . ..
6. Function variables: f1, f2, . . ..
7. Parentheses: (, ).

1 This trend is directly derived from Crispin Wright and Bob Hale, and indirectly
from Boolos. See: [Hale and Wright, 2001; Boolos, 1998].
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We define the set of terms and formulas (of the NOF-language) in the usual
manner.
1. The object variables and the names are terms.
2. If f is a function variable and t is a term, then ‘f(t)’ is a term.
3. If s, t are terms or function variables, then ‘s = t’ is a formula.
4. If α is a formula, then ‘∃xiα’, ‘∀xiα’, ‘∃fiα’, ‘∀fiα’ are formulas.
5. If α, β are formulas, then ‘¬α’, ‘(α∧β)’, ‘(α∨β)’, ‘(α⇒ β)’, ‘(α⇔ β)’

are formulas.
6. No other sequence of symbols is a formula.

We will sometimes use the (metalogical) letters x, y, z as object variables,
f, g, h – as function variables, α, β, γ – as variables ranging over formulas,
s, t – as variables ranging over terms and function variables.

Axioms of the NOF-theory consist of logical axioms (1–5) and a specific
axiom (NOF01).
1. Every instance of the tautology of classical propositional calculus.
2. Every instance of the axioms of classical logic, common to first and

second order logic (i.e. schemes of two versions of axioms, objectual
and functional, dictum de omni and existential introduction).

3. Every instance of the comprehension schema for functions (FCP):2

∀x∃!yα(x, y) ⇒ ∃f∀x∀y(f(x) = y ⇔ α(x, y)),

provided that f does not occur free in α(x, y).

4. Every instance of the axioms for identity:

∀xx = x.

∀s∀t(s = t⇒ (α(s) ⇒ α(t))), provided that t is free for s in α(s).

5. The axiom of extensionality (for functions):

∀f∀g(∀x(f(x) = g(x)) ⇒ f = g).

NOF01. ¬1 = 0.
NOF-theory (in short: NOF) is determined by the axioms and standard
rules of inferences: modus ponens, two versions of (objectual and functional)
rules of generalization and two versions of rules for existential introduction.
A thesis of the NOF-theory is a formula derivable from the axioms with the
use of the rules. If α is a thesis of NOF, we will sometimes write: ∅ ⊢NOF α.

2 We assume, as usual, that every expression of the form ‘∃!zβ(z)’ is an abbreviation
for the formula ‘∃z∀y(β(z) ⇔ z = y)’.
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3. Reconstruction of the concepts of class and equinumerosity

We define (following Frege and John von Neumann) the concepts of class
and membership relation:
Df1. CL(f) =df ∀x(f(x) = 1 ∨ f(x) = 0).
Df2. x ∈ f =df CL(f) ∧ f(x) = 1.

Then classes are (total) characteristic functions in NOF. Instead of func-
tion variables running over classes, we will sometimes use meta-variables
X,Y,Z etc.3

We derive the principles of extensionality and comprehension for classes
from definitions Df1, Df2 and axiom NOF01 (and also from logical axioms).

Fact 1

∅ ⊢NOF ∀X∀(∀x(x ∈ X ⇔ x ∈ Y ) ⇒ X = Y ).

Fact 2

∅ ⊢NOF ∃f∀x(x ∈ f ⇔ α(x)), provided that f is not free in α.

Sketch of the proof.
We acknowledge this fact by transforming the scheme obtained from

the substitution of the formula:

α(x) ∧ y = 1 ∨ ¬α(x) ∧ y = 0,
where y is not free in α(x), for α(x, y) in Axiom 3 (the comprehension
scheme for functions). Since the antecedent of the obtained scheme is true,
we can detach the consequent. Now we can substitute the constants 1 and
0 for y in this consequent and then use Df1, Df2 and NOF01. By simple
logical transforming of the result, we obtain the formula in question. �

We may, as usual, define – with the use of the obtained comprehension
scheme – Boolean operations for classes.

Fact 3

Boolean algebra of classes is a fragment of NOF.

We define a translation function ⋆ from the set of formulae of the monadic
second order logic (MSO) to the set of NOF-formulae:

3 Formulas ‘∀Xα’, ‘∃Xα’ represent, respectively, ‘∀f(CL(f) ⇒ α(X/f))’, ‘∃f(CL(f)∧
α(X/f))’ (provided that f is not free in α).
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(x = y)⋆ = ‘x = y’,

(Xix)
⋆ ≡ ‘∀x(fi(x) = 1 ∨ fi(x) = 0) ∧ f(x) = 1’,

(¬α)⋆ ≡ ‘¬(α)⋆’,

(α ∧ β)⋆ ≡ ‘(α)⋆ ∧ (β)⋆’,

(α ∨ β)⋆ ≡ ‘(α)⋆ ∨ (β)⋆’,

(α⇒ β)⋆ ≡ ‘(α)⋆ ⇒ (β)⋆’,

(α⇔ β)⋆ ≡ ‘(α)⋆ ⇔ (β)⋆’,

(∃xα)⋆ ≡ ‘∃x(α)⋆’,

(∀xα)⋆ ≡ ‘∀x(α)⋆’,

(∃Xiα)⋆ ≡ ‘∃fi(CL(fi) ∧ (α)⋆)’,

(∀Xiα)⋆ ≡ ‘∀fi(CL(fi) ⇒ (α)⋆)’.

We can easily state that the determined function leads all MSO-theses to
NOF-theses.

Fact 4

MSO-system is a fragment of (is interpretable in) NOF-theory.

We may also define the concept of mapping of sets in NOF-theory:

Df3. f : X → Y =df ∀x(x ∈ X ⇒ f(x) ∈ Y ) ∧ ∀x(¬x ∈ X ⇒ f(x) = 0),

and then, as usual, the concepts of bijection and equinumerosity.

4. Is neo-Fregean logic a set theory in disguise?

Let NF be a system obtained from NOF by deletion of the axiom NOF01.
NF is a system without extra-logical constants that forms the logical basis
for NOF.

NF does not include – unlike the full version of second-order logic and
MSO – any existential commitments to classes. Two facts are its sources
(quite nice from the philosophical point of view). First, NF-language does
not have separate types of variables ranging over classes. Second, if classes
were definable in NF, then they would be characteristic functions; however,
this would require extra-logical assumption about the existence of at least
two different objects. Since the said assumption does not apply to this logic,
no version of set theory is interpretable in NF.
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Moreover, this logic has no strong existential commitments to functions.
The source of this property is in turn the fact that the comprehension scheme
for functions (FCP) is the conditional form. It is easy to verify (considering
even the minimal model of NF, thus any singleton) that we can define
exactly one function on the basis of FCP, namely the identity function
(obtained by the substitution of the formula ‘x = y’ for ‘α(x, y)’). Based on
this, we can state the fact:

Fact 5

The set of the existential commitments of NF consists of exactly two
claims:
• there is at least one object,
• there is at least one function.

This conclusion may seem quite surprising from the philosophical point of
view. Previous discussions concerning the issue of the assumptions underly-
ing the consistent and interesting (for logicists) fragments of Frege’s system
seem to suggest that one of the greatest difficulties of neo-Fregeanism is the
question of the ontological commitment of higher order logic. This difficulty
is usually associated with Quine’s thesis that second-order logic is set theory
in disguise.4 Indeed, if the thesis were correct, then neo-Fregeanism would
not be essentially different from the usual set-theoretical logicism.

The previous discussions assumed – as far as I know – that MSO is
contained in each adequate (for logicists) fragment of Frege’s logic. Under
this assumption, a defense against Quine’s thesis was sometimes developed,
replacing the objectual interpretation of second-order quantifiers by a sub-
stitutional one. However, such a solution is not compatible with the spirit of
the neo-Fregean philosophy of logic, both because of the typical assignment
of this philosophy, the objectual interpretation of the logic, and because
of the common tasks of neologicism (contrasting with the limited power of
expression of the substitutional quantification).5

The concept of foundations of mathematics, in which NOF plays a cen-
tral role, provides a simple method to avoid Quine’s objection. The method
is to exclude, from the scope of mathematical logic, systems in which the
predicate variables (including monadic variables) and many-placed func-
tional variables are quantified. As a result, we get a system of second-

4 See for example: [Hale and Wright, 2005, pp. 197–200].
5 See ibid. In this article, other ways to avoid Quine’s difficulty are also presented (for

example the interpretation of MSO as “logic of plurality” in Boolos’s style).
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order logic with modest existential commitments to keep an ordinary, non-
substitutional interpretation (for both types of quantification). At the same
time, the system has sufficient strength of expression for introducing –
through such theories as NOF – fundamental theories in mathematics.

5. Does NOF have ontological commitments?

Since the NOF is an extremely general theory of objects and functions, its
extent does not exclude nominalistic interpretations in which some expres-
sions of NOF-language are values of the object variables. A simple example
of such an interpretation is the structure:

M1,0 = 〈{1,0}, ID〉,
where ID is the identity function (i.e. ID(1) = 1, ID(0) = 0). It is quite rea-
sonable to postulate that ontological commitments of a theory are reduced
to objects that are not linguistic expressions of the theory. In this sense,
we can assume that NOF does not contain any ontological commitments
in M1,0.

Fact 6

There are acceptable interpretations of NOF that are free of any onto-
logical commitment.

In this context, it is quite interesting that NOF01 is one of the ax-
ioms of Tarski-Grzegorczyk’s theory of concatenation TC.6 From the neo-
Fregeanism perspective, as to mathematical basis, there is nothing in the
way of formulating TC theory on the basis of NOF. In making such formal-
ization, we get a “nominalistic” definition of the sequence:

f = (x1, x2, x3 . . .)

as a function defined on successive “powers” of names (the ˆ is here a symbol
of the concatenation operation):

f(1) = x1, f(1ˆ1) = x2, f(1ˆ1ˆ1) = x3 . . . .

Now the n-tuples can be represented as follows. All the arguments,
different from 1k, for 1 ≤ k ≤ n, are assigned by the function f to the

6 TC theory, derived from [Tarski, 1933], in recent years has been described and
applied in examining the issue of decidability in [Grzegorczyk, 2005].
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name 0 (which may be identified with the empty string).7 With the finite
strings, you can then pose the problem of neo-Fregean reconstruction of the
concepts of relation and the many-placed function. This problem, like the
question of the details of the project outlined above, we leave here as open.8

Here we only note the fact.

Fact 7
Let TCNOF be the result of the extension of the NOF-theory by addi-

tion of TC-axioms. In the TCNOF theory, the concept of (finite or infinite)
sequence is definable.
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Abstract. The paper presents the first computing devices which were con-
structed in Poland in the 18th and 19th centuries. Most of the attention has
been devoted to the inventions of Abraham Stern, Chaim Słonimski and Izrael
Staffel, especially to the construction and the rules of operating on their cal-
culating machines. Presented inventors were Jewish artisans who, in spite of
difficult conditions, succeeded in creating numerous interesting inventions (in-
cluding calculating machines). This suggests the existence of a dynamic Jewish
artisan community in Warsaw at that time.
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1. Introduction

The history of mechanical computation is long and interesting, but very of-
ten researchers limit it to inventors from Western Europe such as Schickard,
Pascal, Leibniz and their successors. Since the aim of this paper is to present
calculating machines built in Poland (Eastern Europe), similar machines
built at that time or earlier in Western Europe1 have been completely omit-
ted here. There are only a few papers concerned with this subject. The ar-
ticle has been based mainly on archival sources: contemporary newspapers,
publications of scientific associations, materials from exhibitions and de-
scriptions of the machines drawn by their constructors.

Probably the oldest mechanical calculating machine in the Polish terri-
tory (then belonging to Russia) was the invention of Gevna Jakobson who
before 1770 built a machine for addition, subtraction and multiplication of

* The financial support of the National Centre of Science (grant no N N101 136940)
is acknowledged.
1 There are many publications on the history of calculating machines in Western

Europe, in particular papers in IEE Annals of the History of Computing.
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10-digit numbers. It is extremely difficult to find in source materials descrip-
tions of this machine and the way of operating it. The only available data
say that Jakobson’s machine was a brass case 34 cm × 21,8 cm × 3,4 cm size,
built with gears serving to transfer digits from one row to another similarly
to Schicard’s construction. Jacobson’s calculating machine is preserved in
the Łomonosov Museum of Science in St. Petersburg, though very difficult
to investigate.2

No mention of calculating machines built on Polish territory in the
period between 1770 to the 19th century can be found either in the press or
others source materials. The first information on the subject concerns three
inventors: Abraham Stern, Chaim Słonimski and Izrael Staffel.3 All of them
were Jewish artisans who spent most of their lives in Warsaw (the present
capital of Poland) which was part of the Russian Empire at that time. Their
Jewish origin and social background affected not only their personal lives
but also the history of their inventions (including calculating machines).
Therefore it is worth describing briefly the political and economic situation
in Warsaw of that time.

Warsaw was the capital of the Polish-Lithuanian Commonwealth un-
til 1795, when it was annexed by the Kingdom of Prussia to become the
capital of the province of South Prussia. Liberated by Napoleon’s army in
1806, Warsaw was made the capital of the newly created Duchy of War-
saw. Following the Congress of Vienna of 1815, Warsaw became the centre
of the Congress Poland (called also the Kingdom of Poland), a constitu-
tional monarchy under a personal union with Imperial Russia. At that time
Warsaw was the centre of Poland’s national life; many Polish patriotic or-
ganizations had their seats there. In 1897 Warsaw was the third-largest
city of the Russian Empire after St. Petersburg and Moscow. According
to the Russian population census of 1897 the territory of the Kingdom
was inhabited by six nations; the second nation (after the Poles) were the
Jews, who constituted 13.8% of the whole population [Eberhardt, 2003,
pp. 76–77].

The situation of the Jews in Warsaw in the 19th century had been
changing together with the changes in the political and economic situation
of the city. In 1791 tsarina Catherine the Great created a special region
of Russia, in which permanent residency of the Jews was allowed (beyond

2 In spite of many attempts we did not succeed in getting permission from the mu-
seum’s management to investigate Jacobson’s machine.
3 We concentrate on Abraham Stern, Chaim Słonimski and Izrael Staffel because their

inventions are sufficiently documented.
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that region, Jewish permanent residency was generally prohibited) called
the Settlement of Pale, which included lands formerly belonging to Poland.
In the 19th century most of the Jews in the Pale (including Warsaw) were
poor, living and working in very bad conditions. One of the reasons was the
tremendous growth of the Jewish population in Warsaw; others were polit-
ical and legal regulations. The Jews were obliged to live in special areas in
most cities;4 they faced restrictions on education, business activities, and
occupation. Additional taxes were imposed on members of the Jewish com-
munity. Jewish boys were obliged to serve in the Russian army, where they
were often forced to convert to Christianity. That situation combined with
too many artisans in the same area resulted in the reduction of orders and
a lack of work, which in consequence led to the pauperization of the Jew-
ish artisan community. The legislation was changing along with tsars. Tsar
Nicolas introduced special restrictions against the Jews (among others Can-
tonist Laws which kept the traditional double taxation on the Jews). Those
restrictions were softened by tsar Alexander II (also known as Alexander
the Liberator) and reintroduced by tsar Alexander III who tightened re-
strictions on where Jews could live in the Pale of Settlement and restricting
the occupations that Jews could attain.5

The Jews at that time formed rather a hermetic community with a sep-
arate religion and system of education. Jewish children either were not ed-
ucated at all or attended Jewish religious schools. Most Jews could read
neither Polish nor Russian – this made impossible learning about the latest
technical and scientific achievements. It is worth remarking here that Chaim
Zelig Słonimski6 (detailed presentation included below), first in history, be-
gan writing and publishing science books in Hebrew to enlighten the Jewish
population and in 1862 launched the popular science magazine “Hazefirah”,
the first Hebrew journal with an emphasis on science, which continued after
his death in 1931.

In contrast to the restrictions mentioned above, in the 19th century
Haskalah, the Jewish Enlightenment, began on the Polish territory. Sup-
porters of that movement stressed secular ideas and values and pressed for
assimilation and integration into European society and for educational de-
velopment in secular studies. In spite of the that fact, most Polish Jews were

4 The special area with restriction on the permanent residency of Jewish was founded
in Warsaw in 1809 [Dubnow, 1916–1920, p. 145].
5 Detailed information about the history of Jews on Polish and Russian territory can

be found in [Dubnow, 1916–1920; Klier, 1986].
6 More information about Ch. Z. Słonimski can be found in section 3.
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indifferent to Haskalah; they focused on a continuation of religious tradition
as a base of their lives. Nevertheless the Jewish Enlightenment had promi-
nent supporters mainly in Warsaw, including Abraham Stern and Chaim
Zelig Słonimski.

Abraham Stern, Chaim Słonimski, and Izrael Staffel, like most Jewish
artisans, lived in poverty – that made their living conditions hard. They
often contended with financial problems which prevented them from de-
veloping their talents (including the construction of prototypes of their in-
ventions). However, despite the fact that Jewish inventors lived in isolation,
had difficult access to the knowledge of technical and scientific achievements,
and faced financial problems, they were very talented inventors and their
inventions were not limited to calculating machines.

Summing up, in spite of the difficulties that the Jews faced in 19th cen-
tury Warsaw, Jewish artisans succeeded in creating numerous interesting
inventions (including calculating machines). It can be supposed that there
was a dynamic Jewish artisan community in Warsaw at that time.

2. The calculating machines of Abraham Stern

One of the members of that community was Abraham Stern. ABRAHAM
STERN (1769–1842) was born in a poor Jewish family in Hrubieszów (East-
ern Poland). Thanks to help from Polish nobleman and scientist Stanis-
law Staszic, Stern moved to Warsaw, where he designed several inventions:
among others, a mechanical harvester, a rangefinder, a “topographical cart”
which allowed the drawing of maps of regions to scale (a cart was pulled by
horses along the boundary of a region and at the same time the map of the
region was drawn on paper), a thresher, a mechanical brake for droshky,
a sawmill, and a series of calculating machines. Due to a shortage of money,
Stern did not manage to build prototypes of most of his machines. Stern
was not only an inventor, he wrote poems and was known as an expert in
Hebrew writings. He was also engaged in political activity to support the
Jews. There is the following mention about Abraham Stern in a book by
S. Dubnow [1916–1920, pp. 248–249]:

In 1825 the Polish Government appointed a special body to deal with Jew-
ish affairs. It was called “Committee of Old Testament Believers,” though
composed in the main of Polish officials. It was supplemented by an advisory
council consisting of five public-spirited Jews and their alternates. Among the
members of the Committee, which included several prominent Jewish mer-
chants of Warsaw, such as Jacob Bergson, M. Kavski, Solomon Posner and
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T. Teplitz, was also the well-known mathematician7 Abraham Stern, one of
the few cultured Jews of that period who remained a steadfast upholder of
Jewish tradition.

At the end of his life he became the Rector of the School for Rabbis. He
died in 1842 in Warsaw.

Stern gained the reputation of a splendid inventor. He presented his
inventions a couple of times at the Society’s meetings. His calculating
machines Stern presented to the Royal Warsaw Society of the Friends of
Science (predecessor of the Polish Academy of Science): his first machine
for only four arithmetical operations in December 1812, a second machine
for extracting square roots in January 1817 and finally a combined ma-
chine for four operations and square roots in April 1818.8 The last machine
was probably the first machine for five arithmetical operations in Europe
[Trzesicki, 2006].

There are two pictures of Stern’s machine: the first one is only a frag-
ment of the machine visible in a portrait of Stern by Antoni Blank (1823,
The National Museum in Poznań) and the other one (published in [Sawicka
and Sawicki, 1956]) is a picture of a copy which was exhibited in the Mu-
seum of Industry in Kraków, between the wars (however, the copy has not
been preserved to our times). Because of this, the description of the machine
and its use is based on a presentation by Abraham Stern given at meetings
of the Royal Warsaw Society of the Friends of Science (see [Stern, 1818]).

The machine was a cuboid with five rows of wheels. In the first row there
were 13 wheels with discs, on which there were ordinary digits of num-
bers engraved. They were seen singly through the apertures. Each wheel
corresponded to one position in number: from units, tens, hundreds, etc.
The 13 wheels of the second row were only a part of the machine’s mech-
anism and didn’t have any engravings. The next two rows of wheels with
engraved digits (visible by the windows) were on a carriage which was mov-
ing with the use of cylinders. There were 7 wheels in the first row on the
carriage and 8 wheels in the second one. There were also seven small fold-
ing cranks attached to 7 wheels in the first row on the carriage (this row
was called by the inventor “crank row” ) and one big removable crank on
the cover of the machine. Above the carriage Stern placed the fifth row of

7 There is no evidence that Abraham Stern was interested in mathematics, so it is
a mistake to call him a mathematician [my remark – I. B.-K.].
8 For his inventions he was admitted to the Royal Warsaw Society of the Friends

of Science as a corresponding member in February 1817, then as a qualifying member
(in February 1821), and finally as a full member (in January 1830).
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seven wheels with engraved digits visible through apertures. Besides these
five rows of wheels, there were two more rows of wheels on the cover of the
machine: one above the first row of apertures and the other one above the
last row of apertures (above the lowermost row). On the wheels in these
two rows there were Roman numerals engraved which were visible singly
through the apertures. These two rows were used to check the results of
calculations.

Abraham Stern in his presentation in Warsaw (see above) described in
detail the way of using the machine. To prepare the machine to carry out
four basic arithmetic operations, the operator had to place the carriage using
a handle in such a position that on a carriage on the left-hand side, the word
Species showed through an aperture and all the numerical apertures of the
second row were covered. Then the operator with two handles on the right
and left-hand side of the machine moved the carriage up – if the operation
to carry out was addition or multiplication – and down if the operation to
carry out was subtraction or division. At the same time the words: Addition
– Multiplication or Subtraction – Division (respectively) were seen on the
machine through the aperture and the machine was ready to perform.

To add or subtract two numbers, the operator put one of them in the
uppermost row, and the other one in the crank row on the carriage. Then he
performed the operation by a single circular rotation of a big crank in the
middle of the carriage. The machine had a brake, located on the left-hand
side of the carriage which stopped further movement of the crank. The result
of the operation appeared in the uppermost row of apertures (replacing
the first number). Thanks to that the machine helped to add long rows of
numbers, because the current sum was always in the first row, the added
numbers were placed one after another in the crank row. Additionally, the
machine had a counter which showed how many numbers had been added,
which facilitated adding long rows or tables of numbers without mistakes
like adding the same number twice or skipping some numbers.

To carry out multiplication the operator put one factor in the crank
row in the carriage, and the other in the lowermost row. In the uppermost
row there were only zeroes. Then the carriage was moved from the right
to the left side, to the very end of the machine, by the handle placed on
the left-hand side of the carriage. After releasing the handle, the carriage
returned by itself, and stopped in an appropriate position. In this position
the operator started the rotation of the main crank. During the rotation,
the carriage moved by itself from one number to the other towards the right-
hand side, back through the end of the machine. The ringing of a bell (built
into the machine) informed about the operation’s completion. At the same
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time the desired product appeared in the uppermost row. This method of
multiplication enabled calculating the sum of any number of products. The
operator put the factors of the first product in the machine and operated
until the ring of the bell indicated to stop; then without putting zeros in
the uppermost row he put the factor of the second product, third, and so
on, and when after the last operation the ring of the bell indicated to stop
the rotations, at that time the sum of all the products appeared in the
uppermost row. Stern stated that [1818, p. 118]:

[...] the Machine has a particular superiority over calculations in an ordinary
manner, that from several given multiplications one can obtain a general prod-
uct without performing an addition operation, that is, without combining in-
dividually calculated products together.

To divide numbers, the operator set the dividend in the uppermost row,
the divisor in the crank row of the carriage and zeroes in the lowermost
row (designated for the quotient). Then he moved the carriage towards the
left-hand side, until the divisor stood straight under the dividend number.
At that time the main crank was rotated as long as the dividend number
became smaller than the divisor, at which point the operator pressed with
a finger a flap situated on the right-hand side of the carriage. As a result,
the carriage moved by itself towards the right-hand side and stopped at the
appropriate place, where further operation continued in a similar manner
till the divisor placed in the carriage “passed” the dividend. The quotient
appeared in the lowermost row. If the quotient was a whole number then
in the uppermost row there were only zeroes; if it was a fraction, then the
numerator appeared in the uppermost row and the denominator in the crank
row of the carriage.9

Most interesting was extracting square roots from numbers. First of
all an operator had to prepare the machine to carry out this operation by:
1) placing the carriage on the right-hand side (the word Species disappeared
and the word Radices was visible through an aperture; numerical apertures
of the second row of the carriage opened), 2) moving the carriage (using
two handles on the right and left-hand sides of the machine) from the top
to the bottom (the inscription Extraction appeared in an aperture on the
machine, 3) removing the main crank in the middle of the carriage. Then
the machine was ready to perform.

9 The way of carrying out four basic arithmetic operations using Stern’s machine was
very similar to operating Staffel’s calculating machine (described below).
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To calculate the square root of a given number, the operator set this
number in the uppermost row and zeros in the first and second rows of the
carriage except the position of units in the second row, where the number 1
was set. At the apertures for ordinary numbers of the uppermost row, there
were various signs dividing this row into sections (there were signs at units,
hundreds, tens of thousands, millions, and so on). Identical signs were on
small folding cranks so that each crank corresponded to two wheels of the
uppermost row (the first crank from the right corresponded to units and
tens, the second one – hundreds and thousands, and so on). The last sign,
at the given number, indicated the crank from which the operation had
to start. For example, if the number was 144 (ended on the wheels of the
second sign) the operation started with the second crank from the right
(having the same sign). The folding crank indicated this way was unfolded
and the carriage was moved to the left until this crank stopped in front of the
last sign of the given number. Then the operator rotated this crank as long
as the number on the uppermost row, in front of the rotating crank, became
smaller than or, at least, equal to the number positioned in front of the same
crank in the second row of the carriage. Next, this crank was folded and the
crank on the right of it was unfolded. By pressing a flap on the right-hand
side of the carriage, the carriage moved by itself to the right- hand side,
until it was stopped by a folded crank, just in front of the previous section
and the same operation was performed. This was repeated for all sections
of the given number. After completing the operation, if a given number was
a full square, it was replaced by zeroes and the square root in the crank row
in the carriage appeared. Otherwise, except for the whole number root, an
additional fraction resulted (the numerator on the uppermost row and the
denominator in the second row in the carriage).

The machine was also prepared for approximating the square roots in
decimal fractions. For example, to compute the square root of 7 approxi-
mated with two decimal digits, zeros were set in two sections (4 wheels) and
the given number 7 was set in the third section, which was on the 5th wheel
of the uppermost row. On the machine there was a small hand to distinguish
between the number actually given and the zeroes attached to it. The given
number 7 was under the third sign, so the operator had to unfold the third
crank and perform the operations as described above. The result appeared
on 3 crank wheels as the number 264. Cutting off two digits for a decimal
fraction (as the hand indicated), the result was understood as 2.64. In ad-
dition, in the uppermost row there was the number 304, as a numerator,
and in the second row of the carriage 529, as a denominator of the ordinary
fraction.
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Above, the structure of Stern’s machine and the way of using it was
presented. However, there is one part of the machine which was described,
but the purpose of designing it has not been explained yet – two rows
of wheels with Roman numerals. Stern put these wheels into the machine
for checking (testing) the results of arithmetical operations. The way of
performing such tests was presented in the case of multiplying (division was
tested in a similar way).

While carrying out the multiplication, the digits of one of the factors
(set in the lowermost row) disappeared and were replaced by zeroes one
by one. To make visible, after the work, which factor was a part of the
problem, the operator set it in advance in a Roman numbered row located
above the apertures of the lowermost row. After completing the operation,
the result (the product) was on the uppermost row; in the lowermost row
there are only zeroes. The operator shifted as many zeroes to the number 9
as the number of digits of the factor in the Roman numbered row, except
for the first digit, being meaningful, on the right-hand side of the factor,
where zero remains. Then the carriage was moved to the left and stopped by
itself at the last number 9. After that the rotation of the main crank lasted
as long as the number appeared was equal to the Roman numeral right
above it (the same which had previously disappeared). At that time, the
operator pressed a flap on the right-hand side of the carriage, the carriage
moved to the right and the rotations proceeded further, as before, until
the given factor fully appeared in its first place, that is, in the lowermost
row. After this work, if it turned out that there were as many digits in
the factor in the lowermost row as the number of zeroes in the uppermost
row, at the right-hand side, and the numbers following them were equal to
the numbers in the crank row of the carriage, then it was clear that the
product (the result of the process of multiplication) was true, otherwise it
was false.

In the case of testing the result of division the operator proceeded in
a similar way, but only to retain digits of the dividend (which disappeared
during the work, having been replaced by zeroes) the row of wheels with
Roman numerals above the row of the dividend’s digits was used.

Stern’s machines were highly valued, among others by the Royal War-
saw Society of the Friends of Science, but they were never manufactured,
maybe because of the intricate mechanisms which resulted in high costs
of production. Stern did not have a sufficient amount of money to begin
mass-production of his machine, but the machine was finally produced and
used.
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3. Between mathematics and machines – the invention of
Chaim Zelig Słonimski

Continuing after Abraham Stern was his son-in-law Chaim Zelig Słonimski.
CHAIM ZELIG SŁONIMSKI was born on 31st March, 1810 in Białystok,
(Eastern Poland). He was a deeply knowledgeable Talmudist and a self-
educated scientist. Słonimski had wide interests; he was interested in philo-
sophy, astronomy, physics and mathematics. He was the first to begin writ-
ing and publishing science books in Hebrew to enlighten the Jewish popu-
lation in Eastern Europe. He introduced to Hebrew an entire vocabulary of
technical terms. Słonimski was a born popularizer; at the age of 23, he com-
posed a brief practical guide on the foundations of mathematics. The first
part of the guide, dedicated to algebra, was published in 1834. In 1835, in-
spired by the general interest in the passing of Halley’s Comet, he published
a book on astronomy, “Comet”, describing Halley’s Comet and explaining
the laws of Kepler. In 1838 he published another book on astronomy in
which he described his own research on the calculations of eclipse dates
and on composing the Hebrew calendar. Later in life, he started publishing
a popular science magazine “Hazefirah”, the first Hebrew journal with an
emphasis on science, which continued after his death, till 1931. He was also
the author of a biography of Alexander von Humboldt. Słonimski died on
May 15th, 1904 in Warsaw.

Słonimski was a talented inventor. He invented several devices and pro-
cesses of various sorts. In 1853 he invented a chemical process for plating
iron vessels (dishes) with lead, and in 1856 an electrochemical device for
sending quadruple telegrams (the system of multiple telegraphy perfected
by Lord Kelvin in 1858 was based on Słonimski’s discovery). Among other of
Słonimski’s inventions, calculating machines were worth noting. He invented
and produced two calculating machines, one for addition and subtraction,
and the other one for multiplication. The most interesting is the second
one, which was based on a theorem of number theory called Słonimski’s
Theorem.

Słonimski’s Theorem Let Z be any natural number and z1, z2, z3,
z4, ... be the (decimal) digits of this number (denoted from the right to the
left). If we write down the number Z and its multiples 2Z, 3Z, 4Z, 5Z, 6Z, 7Z,
8Z and 9Z in such a way that single digits, decimals, hundreds and
so on form vertical lines, then the last vertical line passing by the last
digit z1 of the number Z will contain the second digits of multiples
2z1, 3z1, 4z1, 5z1, 6z1, 7z1, 8z1 and 9z1. But in every other line the situation is
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different, for example the line passing by zε does not contain the second dig-
its of multiples 2zε, 3zε, 4zε, 5zε, 6zε, 7zε, 8zε and 9zε. To obtain these digits
a special sequence (called a “complementary sequence”) must be added to
the sequence of multiples of zε. This complementary sequence depends on
the digits after the number Z. There are only twenty-eight different com-
plementary sequences. To obtain digits of the vertical line passing by zε,
the sequence multiples of zε should be added to complementary sequences
corresponding to the digits, which follow zε in number Z.

To understand Słonimski’s theorem let us consider for example the num-
ber Z = 1246. Then z1 = 6, z2 = 4, z3 = 2 and z4 = 1. If we write down Z
and its multiples 2Z, 3Z, 4Z, 5Z, 6Z, 7Z, 8Z and 9Z as follows:

z4 z3 z2 z1
Z 1 2 4 6

2Z 2 4 9 2

3Z 3 7 3 8

4Z 4 9 8 4

5Z 6 2 3 0

6Z 7 4 7 6

7Z 8 7 2 2

8Z 9 9 6 8

9Z 1 1 2 1 4

then the last vertical line passing by the last digit 6 of the number 1246 will
contain the second digits of multiples 6, 12, 18, 24, 30, 36, 42, 48 and 54 (see
the column marked in the table above). The theorem states that “[...] in
every other line the situation is different, for example the line passing by zε
does not contain the second digits of multiples 2zε, 3zε, 4zε, 5zε, 6zε, 7zε, 8zε
and 9zε. To obtain these digits a special sequence (called a “complementary
sequence”) must be added to the sequence of multiples of zε.” So, in every
other line decimals of multiples are carried to the next left column. To
illustrate this, let us examine the table below where digits in brackets were
carried to the next left column (missing in the columns of the table above),
where they were printed in bold:
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z4 z3 z2 z1
Z 1 2 4 6

2Z 0 02 + 0 = (0)2 04 + 0 = (0)4 08 + 1 = (0)9 (1)2

3Z 0 03 + 0 = (0)3 06 + 1 = (0)7 12 + 1 = (1)3 (1)8

4Z 0 04 + 0 = (0)4 08 + 1 = (0)9 16 + 2 = (1)8 (2)4

5Z 0 05 + 1 = (0)6 10 + 2 = (1)2 20 + 3 = (2)3 (3)0

6Z 0 06 + 1 = (0)7 12 + 2 = (1)4 24 + 3 = (2)7 (3)6

7Z 0 07 + 1 = (0)8 14 + 3 = (1)7 28 + 4 = (3)2 (4)2

8Z 0 08 + 1 = (0)9 16 + 3 = (1)9 32 + 4 = (3)6 (4)8

9Z 1 09 + 2 = (1)1 18 + 4 = (2)2 36 + 5 = (4)1 (5)4

In such a way, passing over the first row (for Z), the bold dig-
its form complementary sequences as follows: (0, 0, 0, 0, 0, 0, 0, 0) for z1,
(1, 1, 2, 3, 3, 4, 4, 5) for z2, (0, 1, 1, 2, 2, 3, 3, 4) for z3 and (0, 0, 0, 1, 1, 1, 1, 2)
for z4. Now the question arises: how many complementary sequences may
occur, regardless of the digits of number Z? Słonimski found that exactly
28 different complementary sequences can occur.10 That is the content of
Słonimski’s theorem presented above.

This theorem was derived from the Farey sequence.11 Słonimski does
not seem to have published the theorem. He presented it to the St. Pe-
tersburg Academy but he never proved it himself. However, a German
mathematician August Leopold Crelle, who was familiar with the theorem
because of Słonimski’s personal communication during his visit to Berlin
in 1844, proved Słonimski’s Theorem and published the result in his own
journal [Crelle, 1846]. Using his theorem, Słonimski composed a table with
280 columns, each of them containing 9 numbers. This table was the main
component of the multiplication machine which showed products of all ranks
for a given number.12

Słonimski’s machine was a box sized 40 cm × 33 cm × 5 cm. There were
some cylinders inside, which could both revolve around the axis and move
along it. The table of digits derived from Słonimski’s theorem was placed
(engraved) on the main cylinders. There were two small cylinders beside it

10 Crelle marks the complementary sequences with and shows it as a table in the proof
of Słonimski’s theorem published in [Crelle, 1846].
11 Farey’s sequence of order n is a sequence of completely reduced fractions between

0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged
in order of increasing size. Each Farey sequence starts with the value 0, denoted by the
fraction 0/1, and ends with the value 1, denoted by the fraction 1/1. F1 = 0/1, 1/1, F2
= 0/1, 1/2, 1/1, F3 = 0/1, 1/3, 1/2, 2/3, 1/1, F4 = 0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1,. . .
12 The tables are in the book [Knight, 1847].
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with digits from 0 to 9 on one of them and letters a, b, c, d together with
digits 1 to 7 on the other one. The cylinders were driven with the use of
handles fastened to the shaft end. While the small cylinders were immobile,
the main cylinders were moved along their axis with toothed gearing, driven
with screws mounted on the cover of the machine. There were also eleven
rows of apertures on the cover. By these apertures the signs engraved on
the cylinders were visible.

The use of Słonimski’s machine was very simple. The multiplicand was
set on the lowermost (the first) row of apertures with handles mounted on
the cover. After that, both letters and numbers appeared in the apertures
of the second and third row. Their combination formed the code which
informed the operator which screw should be turned (and which cylinder
was to be shifted). Then in the rows of the 4th–11th apertures appeared
the resulting numbers. In the 4th row was the product of multiplication
by 2, the 5th row by 3, the 6th row by 4 etc. Finally, the products of all
ranks were displayed. After adding them on the paper, the desired product
was obtained. Needless to say, the convenience of this method was rather
questionable, and it is no wonder that there is no evidence of its systematic
practical usage. But Słonimski’s machine got high recognition during his life-
time. On 8th August, 1844 he demonstrated his device to the Royal Prussian
Academy of Sciences in Berlin. Słonimski’s work was highly appreciated.

The next year, on April 4, 1845, he presented the machine and explained
its design to the Academy of Sciences in St. Petersburg during a seminar at
the department of physics and mathematics. The academician V. A. Bun-
yakovski and the scientific secretary P. N. Fuss (Voss) composed a very
positive official review of the invention. They emphasized the solid math-
ematical ground of the presented work because the discovery of the basic
feature of numbers was the principlal but not the only condition for compos-
ing this calculating machine. In the review the shrewdness of Słonimski was
appreciated, because he arranged the aforementioned tables and invented
also the code which the operator used to calculate the products. So the sur-
face of cylinders was covered with a complicated system of 2280 numbers
and 600 letters. In November 1845 Słonimski received a 10 year patent for
his invention.13 He was also awarded the Demidov prize of the Second grade
amounting to 2000 rubles [Trzesicki, 2006].14

13 He also applied for patents in the U.S. and Britain, but unsuccessfully.
14 The Demidov family were Russian industrial magnates of the 18th and 19th centuries.

The family established a foundation in support of science and education. The Second grade
prize amounted to 2500 Rubles.
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Summing up, Słonimski’s machine was a simple device, whose construc-
tion was based on a theorem in number theory. This theorem, named after
its inventor, enabled Słonimski to arrange a table of numbers, which was
the basis of construction for the calculating machine. Thanks to the the-
orem Słonimski’s machine had a very simple construction and was cheap.
At that time only a few calculating machines existed which were based on
such a good theoretical background. That was the “mathematical art” of
the device, but unfortunately the machine did not survive to our times.

4. The machine of Izrael Abraham Staffel

Another machine which did not survive to the present day is an inven-
tion of a clockmaker from Warsaw, Abraham Staffel. ABRAHAM IZRAEL
STAFFEL (1814-1885) was born in Warsaw. At the age of only 19 he opened
a clockmaster’s shop, where he worked till his death. Most of his life Staffel
spent on developing various inventions. He designed an automatic taximeter
for cabs which was controlled automatically: it started during the getting on
of passengers and stopped after their getting off. In 1851 Staffel presented
at an exhibition in London a probe for determining the contents of alloys
based on Archimedes law. It was used for testing the authenticity of coins.
Staffel designed also: an anemometer (which besides showing the direction
also measured the force of the wind), a device for destroying locusts, a press
for printing multicolor stamps, a machine for preventing the forging of doc-
uments and securities, a series of fans (or rather air conditioning) installed
in many buildings, hospitals, and in The Royal Castle in Warsaw. Staffel
was also the designer of a “small amusing underground train going from
the kitchen to the dining room”. Despite the fact that he was a well-known
and appreciated inventor, he had financial troubles all his life. Staffel died
in poverty after a long disease in 1885.

Abraham Staffel designed and built also calculating machines. For the
first time he presented a machine for four basic arithmetical operations,
exponentiation, and extracting square roots, in 1845 at the industrial exhi-
bition in Warsaw. Unfortunately this machine didn’t survive to our times,
so its construction and way of performing operations can be found only in
the contemporary press and in reports on exhibitions.

The mechanism of the machine Staffel put in a box sized 20 inches ×
10 inches × 8 inches. There were 13 apertures for showing the digits of the
result on the case. Below, there was a cylinder with 7 rollers placed on it.
There were apertures for putting numbers on the rollers. At the bottom of
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the machine there were 7 apertures for setting the digits of the multiplier and
for showing the result of division. On the cover of the machine there were also
a crank and a hand to select the type of operation (by setting the handle on
one of the inscriptions: extractio, substractio/divisio and additio/multiplio).

The modern (for those days) construction of the machine enabled per-
forming not only simple calculations but also calculating more complicated
expressions like, for example:15

To calculate the above expression the operator put number a on the
rollers of the machine, turned the hand on the engraving substractio/divisio
and turned the crank. Then he put number b on the rollers and turned the
crank and finally put number c on the same place. After turning the crank
the sum a + b + c was visible in the upper row of apertures. To continue
calculation the operator put the hand on the inscription substractio/divisio
and putting numbers d and e one by one turned the crank in the oppo-
site direction than in the case of addition. The partial result appeared in
the upper row of apertures. Then the operator put the hand on the sub-
stractio/divisio and performed to calculate the product in the bracket. In
order to do that he set number g on the cylinder and the number h in the
lower row of seven apertures and turned the crank until the digits in the
apertures of the lower row all became zeros. After that the value of the
expression appeared in the upper row of apertures. Then, after setting the
hand on the substractio/divisio the operator calculated in the same way
the product m ×m and obtained the value of the numerator of the above
fraction. To complete the calculation he put the number n on the cylinder
and zeros in the lowermost row of apertures (the hand there was still on
the inscription substractio/divisio). After turning the crank in the lower-
most row of apertures the value of whole expression appeared and in the
upper row of apertures there was still the value of the numerator of this
expression.

Staffel’s machine could serve as a tool for extracting square roots. To
calculate the square root of a given number, the operator set this number
in the upper row of apertures, zeros on the cylinder, zeros in the lowermost
row except the position of units in the row where number 1 was set and
put in the handle on the inscription extractio. No description of performing
calculations has survived to our times, but the procedure was probably
similar to extracting square roots on Stern’s machine.

15 This example and the description of using the machine was taken from [TI1, 1867].
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Staffel introduced a few improvements to his machine. In the case of
division, if the result wasn’t the integral then the value of the numerator of
the result was in the upper row of apertures and the denominator was in the
lower one. In the machine a ring was built which indicated a mistake in the
case when the result of subtraction was negative (when the numbers were
set in the wrong order) and when the divisor is bigger than the dividend
while performing division.

The machine of Abraham Staffel was presented in at least three exhi-
bitions. At the exhibition in Warsaw, which was mentioned above, Staffel
received a silver medal for his invention. Articles in contemporary news-
papers pointed out that the machine considerably shortened the calculation
(tables comparing the time of calculations in seconds were published). In
1846 Staffel presented his machine to the Russian Academy of Sciences in
St. Petersburg. Two famous mathematicians, V. Bunyakovski and B. Ja-
cobi, gave it a very positive opinion and Staffel was awarded a Demidov
prize amounting to 1500 rubles16 but he never patented it. The machine
was also presented at The Great Exhibition in London in 1851 in one group
with the arithmometer of Xavier Thomas de Colmar. Two machines were
awarded: Staffel’s and Colmar’s. After the London Exhibition a brief note
in Scientific American appeared saying [SA1, 1851]:

An extraordinary calculating machine, says the London Times, is now placed
in the Russian Court. It is the invention of a Polish Jew, named Staffel, a native
of Warsaw, and works addition, subtraction, multiplication and division, with
a rapidity and precision that are quite astonishing.

At the end of his life Staffel handed over his invention to the Russian
Academy of Science. After the collapse of tsarism the collection of Academy
broke down. Probably Staffel’s machine was destroyed then and did not
survive to our times.

5. Conclusion

The calculating machines described above, despite the recognition they
gained, were not mass-produced. The following question which arises is:
why were these machines not universally used in manufactures, banks, and
scientific institutions, as happened in the case of Xavier Thomas de Col-
mar’s arithmometers? Probably the main reason was the complexity of the

16 Compare with the prize which Słonimski received.
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machines’ construction. The production of single parts of the machines was
very problematic and expensive, so would result in very high prices for the
machines. Moreover the machines described above were invented by Jewish
artisans living in the region of Poland under the rule of Russia who had not
much freedom of activity and not enough money to realize their ideas.

Abraham Stern, Chaim Słonimski, and Izrael Staffel were Jewish ar-
tisans who lived at the same time in the same place. Perhaps it was no
coincidence. It should be supposed that there was a dynamic Jewish arti-
san community in Warsaw in the 19th century, though there is no evidence
for personal relations either between Staffel and Stern or between Staffel
and Słonimski. There is also no evidence that Staffel investigated Stern’s or
Słonimski’s machines.

It is worth underlining that inventors in Polish territory (particularly
the Jews) very rarely traveled abroad and therefore did not have contact
with inventions from Western Europe at that time. As was mentioned above,
the Jews had very limited access to the knowledge of technical and scientific
achievements (most of them could read neither in Polish nor in Russian).
In spite of that, these Jewish artisans succeeded in creating numerous in-
teresting inventions including calculating machines, which were comparable
with calculating machines produced in Western Europe at the time. Their
construction was rewarded during exhibitions in the Russian Empire and
abroad. Stern’s, Słonimski’s, and Staffel’s calculating machines were not
the oldest constructions of such type in Europe, but taking into account the
hard conditions in which they worked they can be considered as forming an
interesting part of the history of mechanical computing in Europe.17
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LOGIC OF DESCRIPTIONS.
A NEW APPROACH TO THE FOUNDATIONS

OF MATHEMATICS AND SCIENCE

Abstract. We study a new formal logic LD introduced by Prof. Grzegorczyk.
The logic is based on so-called descriptive equivalence, corresponding to the idea
of shared meaning rather than shared truth value. We construct a semantics
for LD based on a new type of algebras and prove its soundness and complete-
ness. We further show several examples of classical laws that hold for LD as
well as laws that fail. Finally, we list a number of open problems.

Keywords: non-classical logic, logic of descriptions, equivalence connective,
paradoxes of implication

1. Introduction

Logic arose from philosophical and linguistic reflections that began in an-
cient Greece and later spread throughout Europe. In the 20th century, formal
logical systems, especially for classical two-valued logic, achieved perfection
and became the gold standard in the foundations of mathematics (and of
science in general). However, every now and then a philosopher, a logician
or a mathematician has expressed doubts and objections concerning this
standard. These objections have been made on various grounds, and many
so-called “non-classical” logics have been proposed to rectify the perceived
faults, such as modal, intuitionistic, conditional, relevant, paraconsistent,
free, quantum, fuzzy, independence-friendly, and so on. Nevertheless, none
of these logics has been generally accepted as the right one, and a resolu-
tion to the arguments about their practical and philosophical merits and
drawbacks is nowhere in sight.

Historically, logic was born out of attempts to explain the structure of
human reasoning. It should be emphasized that ancient logicians did not
aspire to create an abstract model of human thought, akin to modern at-
tempts at passing the Turing test. The lofty goal of their reflections on
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logical principles was to find their way into the very essence of reality. This
goal, however utopian it may have been, was consistently pursued by the
philosophers who brought forth the logic revolution. However, the invention
of formal methods in mathematics – and hence a means to achieve unprece-
dented rigour – led to logic being “taken over” by engineers and computer
scientists. This observation is not meant as a criticism. The results obtained
in the field of mathematical logic, as well as its fruitful applications in in-
formation technology are impressive indeed. Nevertheless, despite the great
success of logic in these areas, we may still ask whether the formal sys-
tems commonly used in mathematical logic can serve as adequate tools for
understanding human reasoning.

Prof. Grzegorczyk treats this question in his recent article [2011], which
can be described as a manifesto calling for the creation of new logical prin-
ciples suitable for scientific description of reality and for the revision of the
current standard; that is, various versions of classical two-valued logic.

One of Prof. Grzegorczyk’s objections to classical logic is the fact that
it “restricts itself to considering only one, admittedly the most important,
parameter of the content of a claim, namely its truth value” [2011, p. 446],
which – as the author points out – is the source of the paradoxical nature
of certain tautologies involving implication and equivalence, such as false
implies everything, anything implies the truth, any true sentences are equiv-
alent regardless of their content. As the author explains, such tautologies
are useful in formal deductions in the technical sense, but do not otherwise
contribute to understanding. Of course, the paradoxes of material implica-
tion have been widely discussed elsewhere, and several non-classical logics
have been created in order to solve them. However, the main point of the
paper does not involve material implication as such, but rather the prob-
lematic nature of material equivalence, which is clearly seen in the following
example. In mathematics, one may say that the equations x + 2 = 3 and
1−x = 0 “mean the same” or “say the same thing in different ways” because
they are logically equivalent; that is, their truth values are the same for any
given value of x. On the other hand, any two true propositions are equiva-
lent to each other. So, if we consistently speak of equivalent propositions as
“meaning the same”, we end up claiming that “2 + 2 = 4” means the same
as “Warsaw lies on the Vistula river.” According to Prof. Grzegorczyk, this
shows that

Such combined propositions, established as equivalences according to classical
formal logic, do not lead to anything interesting. The paradoxical nature of
the classical concept of equivalence arises because we may expect equivalence
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to open the possibility of linking the content of one claim with that of the
other. We would like equivalent sentences not only to be equally true, but also
to speak about the same subject. It seems (from a philosophical point
of view) that claims that are not connected by a common subject cannot be
treated as fully equivalent. [2011, p. 447]

To remedy the ills of classical equivalence and to avoid the above-
mentioned paradox, we should carefully distinguish between two kinds of
equivalence, which are:
1. “truth-functional equivalence” – the condition that the truth values of

two propositions are the same; this is classical equivalence ↔ (“coarse,
even cynically paradoxical”).

2. “descriptive equivalence”1 – the condition that the meanings of two
propositions are the same (“more subtle, but not totally determined,
allowing for an intuitive interpretation of being connected by a shared
subject”).

Introducing a new connective involves describing its usage, which natu-
rally leads one to consider a new logical formalism in which the classical
equivalence connective ↔ has been replaced with a descriptive equivalence
connective, which, according to Prof. Grzegorczyk, better reflects human
ways of thinking.

We will use the symbol ≡ to denote the new connective. The new logic,
denoted here by LD, is defined by rules of inference and a set of axioms. In
the article [Grzegorczyk, 2011], a number of important questions concern-
ing the new logic are raised. Firstly, do the new equivalence and the corre-
sponding implication coincide with their respective classical counterparts?
Secondly, can we define a semantics for which the given syntactic proof
system is sound and complete?

In the present article, we analyze the logic LD as presented in [Grze-
gorczyk, 2011]. We will show that the descriptive equivalence connective is
indeed different from the classical one. In fact, our further results show that
the new logic is substantially different from many other known ones, repre-
senting various kinds of non-classical logics. One of our central results is the
construction of a semantics for LD, which, in turn, allows us to prove fur-
ther, rather peculiar, properties of LD, shedding some light on the obscure
secrets of descriptive equivalence.

1 In a draft version of the article [Grzegorczyk, 2011], the new connective is called the
equimeaning connective, while in its final, published version, it is named the perceptive
equivalence connective. Later on, Prof. Grzegorczyk came to the conclusion that the most
fitting name for the new connective is the descriptive equivalence connective, and this is
the terminological convention we will follow.
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It is worth noting that the distinction between classical and descriptive
equivalence is essentially the same as the distinction between the truth value
and the meaning of a sentence. Roman Suszko, among others, argued for
the need, and even necessity, to consider the latter distinction when build-
ing the semantical basis for a logical system, and he introduced so-called
non-Fregean logic as a formalization of this idea (see [Suszko, 1968]). The
sentential version of non-Fregean logic (called Sentential Calculus with Iden-
tity, SCI) is obtained from classical sentential logic by adding a new identity
connective. Suszko’s philosophical motivations for creating SCI were similar
to those of Prof. Grzegorczyk for creating LD. By coincidence, both of them
chose the symbol ≡ for essentially the same purpose: to denote descriptive
equivalence in LD and identity of sentences in SCI. However, their intuitions
and underlying philosophical assumptions have led to two very different for-
malisms. The logic SCI is based on classical logic, which is simply extended
by adding new axioms expressing the properties of sentential identity. On
the other hand, LD is built from the ground up to reflect the interactions
between descriptive equivalence and the basic connectives of negation, dis-
junction and conjunction, introducing counterparts of many classical laws
involving equivalence and omitting others. Nevertheless, the logics of Suszko
and Grzegorczyk have many common elements, which can be seen especially
in our construction of a semantics for LD.

The paper is organized as follows. In Section 2, we present the language
and the Hilbert-style axiomatization of LD with examples of LD-provable
formulas. We present a semantics and prove its soundness and completeness
in Section 3. In Section 4, we discuss some interesting properties of LD, in
particular classical results that fail for LD and the independence of the ax-
ioms. In Section 5, we study two proposed alternative formulations of LD,
showing how they fail to fulfill the philosophical motivations behind LD.
Conclusions and open problems are presented in Section 6. To avoid clut-
tering the main text with excessive tables, we present most example models
in the Appendix.

Our results rely heavily on computer software for semi-automatic proof
generation and model checking, written by the second author. The software
and associated files are available upon request.

2. Logic LD: axiomatization

Logic LD belongs to the family of propositional logics. The vocabulary of
the logic LD consists of the following pairwise disjoint sets of symbols:
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• V = {p0, p1, p2, . . .} – an infinite countable set of propositional variables,
• {¬,∨,∧,≡} – propositional operations of negation ¬, disjunction ∨,

conjunction ∧, and descriptive equivalence ≡.
In practice, we will use the symbols p, q, r instead of the “official” sub-
scripted ones.

As usual in propositional logics, we define the set of LD-formulas as the
smallest set that contains all the propositional variables and is closed under
all the propositional operations. The logic LD is given by the Hilbert-style
axiomatization. Below we list the axioms and rules of inference of LD in
their original forms from [Grzegorczyk, 2011].

Axioms:2

Ax1 p ≡ p

Ax2 (p ≡ q) ≡ (q ≡ p)

Ax3 (p ≡ q) ≡ [(p ≡ q) ∧ ((p ≡ r) ≡ (q ≡ r))]

Ax4 (p ≡ q) ≡ (¬p ≡ ¬q)
Ax5 (p ≡ q) ≡ [(p ≡ q) ∧ ((p ∨ r) ≡ (q ∨ r))]
Ax6 (p ≡ q) ≡ [(p ≡ q) ∧ ((p ∧ r) ≡ (q ∧ r))]
Ax7 (p ∨ q) ≡ (q ∨ p)
Ax8 (p ∨ (q ∨ r)) ≡ ((p ∨ q) ∨ r)
Ax9 p ≡ (p ∨ p)
Ax10 (p ∧ q) ≡ (q ∧ p)
Ax11 (p ∧ (q ∧ r)) ≡ ((p ∧ q) ∧ r)
Ax12 p ≡ (p ∧ p)
Ax13 (p ∧ (q ∨ r)) ≡ ((p ∧ q) ∨ (p ∧ r))
Ax14 (p ∨ (q ∧ r)) ≡ ((p ∨ q) ∧ (p ∨ r))
Ax15 ¬(p ∨ q) ≡ (¬p ∧ ¬q)
Ax16 ¬(p ∧ q) ≡ (¬p ∨ ¬q)
Ax17 ¬¬p ≡ p

Ax18 ¬(p ∧ ¬p)
Observe that among the eighteen axioms of LD, only one axiom, namely
Ax18, does not involve the descriptive equivalence connective. Moreover,
the rest of the axioms can be divided into three groups, with Ax3 playing
a double role. First, the axioms Ax1–Ax3 express the basic properties of

2 Here we adopt a revised form of the axiom Ax3, presented in Errata 2012 to [Grze-
gorczyk, 2011]. We will discuss the original form in Section 5.
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descriptive equivalence, namely its reflexivity, symmetry, and transitivity.
Axioms Ax3–Ax6 formulate the idea that equals can be substituted for each
other. Axioms Ax7–Ax17 state some basic properties of equivalence of com-
pound formulas built with the classical connectives of negation, conjunction,
and disjunction, which are: associativity, commutativity, and idempotency
of conjunction and disjunction (axioms Ax7–Ax12), distributivity of conjunc-
tion (resp. disjunction) over disjunction (resp. conjunction) (axioms Ax13
and Ax14), involution of negation that additionally satisfies de Morgan laws
(axioms Ax15–Ax17).

Rules of inference:

(MPLD)
ϕ ≡ ψ,ϕ

ψ
(Sub)

ϕ(p0, . . . , pn)

ϕ(p0/ψ0, . . . , pn//ψn)

(∧1)
ϕ,ψ

ϕ ∧ ψ (∧2)
ϕ ∧ ψ
ϕ,ψ

For technical reasons, we impose the additional restriction that the
rule (Sub) may be applied only to axioms. As in the classical case, this
restriction is not essential when no additional assumptions are used in the
proof.

The rules (Sub), (∧1), and (∧2) are standard in classical logic. However,
the crucial feature of LD is that it contains a modus ponens-type rule only
with respect to descriptive equivalence, while the classical modus ponens
rule is not present. Furthermore, LD does not have any rule for introduc-
tion or elimination of disjunction or negation. As we will show later, only
a disjunction introduction rule is derivable in LD.

An LD-formula ϕ is said to be LD-provable (⊢ ϕ for short) whenever
there exists a finite sequence ϕ1, . . . , ϕn of LD-formulas, n ≥ 1, such that
ϕn = ϕ and each ϕi, i ∈ {1, . . . , n}, is an axiom or follows from earlier
formulas in the sequence by one of the rules of inference. If X is any set of
LD-formulas, then ϕ is said to be LD-provable from X (X ⊢ ϕ for short)
whenever there exists a finite sequence ϕ1, . . . , ϕn of LD-formulas, n ≥ 1,
such that ϕn = ϕ and for each i ∈ {1, . . . , n}, ϕi is an axiom or ϕi ∈ X
or ϕi follows from earlier formulas in the sequence by one of the rules of
inference.

Now, it is worth noting that the logic LD is consistent, as the inter-
pretation of ≡ as the usual classical equivalence yields that all the axioms
are classical tautologies and all the rules preserve classical validity. Hence,
one of all possible models of LD is the two-element Boolean algebra of the
classical propositional logic. This implies also that the formula p ≡ ¬p is
not LD-provable.
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The axiomatization of LD enables us to prove many of the classical
laws, but not all. In particular, the formula ϕ ∨ ¬ϕ is LD-provable.

⊢ (ϕ ∨ ¬ϕ), for any LD-formula ϕ.

(1) ¬(ϕ ∧ ¬ϕ) (Sub) to Ax18 for p/ϕ

(2) ¬(ϕ ∧ ¬ϕ) ≡ (¬ϕ ∨ ¬¬ϕ) (Sub) to Ax16 for p/ϕ, q/¬ϕ
(3) ¬ϕ ∨ ¬¬ϕ (MPLD) to (1) and (2)

(4) (¬ϕ ∨ ¬¬ϕ) ≡ (¬¬ϕ ∨ ¬ϕ) (Sub) to Ax7 for p/¬ϕ, q/¬¬ϕ
(5) ¬¬ϕ ∨ ¬ϕ (MPLD) to (3) and (4)

(6) ¬¬ϕ ≡ ϕ (Sub) to Ax17 for p/ϕ

(7) (¬¬ϕ ≡ ϕ) ≡ [(¬¬ϕ ≡ ϕ) ∧ ((¬¬ϕ ∨ ¬ϕ) ≡ (ϕ ∨ ¬ϕ))]

(Sub) to Ax5 for p/¬¬ϕ, q/ϕ, r/ϕ

(8) (¬¬ϕ ≡ ϕ) ∧ ((¬¬ϕ ∨ ¬ϕ) ≡ (ϕ ∨ ¬ϕ)) (MPLD) to (6) and (7)

(9) (¬¬ϕ ∨ ¬ϕ) ≡ (ϕ ∨ ¬ϕ) (∧2) to (8)

(10) ϕ ∨ ¬ϕ (MPLD) to (5) and (9)

Also the following formula is provable in LD:

¬(ϕ ∧ (¬ϕ ∨ ψ)) ∨ ψ3.
Below we sketch its proof.

⊢ ¬(ϕ ∧ (¬ϕ ∨ ψ)) ∨ ψ, for all LD-formulas ϕ and ψ.

(1) (¬ϕ ∨ ψ) ∨ ¬(¬ϕ ∨ ψ) (Sub) to Ax18 for p/(¬ϕ ∨ ψ)

(2) (¬ϕ ∨ ¬(¬ϕ ∨ ψ)) ∨ ψ from (1) by Ax7 and Ax8

(3) ¬(ϕ ∧ (¬ϕ ∨ ψ)) ∨ ψ from (2) by Ax16

It is also easy to see that the following rule is a derived LD-rule:

(tran)
ϕ ≡ ψ,ψ ≡ ϑ

ϕ ≡ ϑ
,

which can be proved as follows:

(1) ϕ ≡ ψ

(2) ψ ≡ ϑ

(3) (ϕ ≡ ψ) ≡ [(ϕ ≡ ψ) ∧ ((ϕ ≡ ϑ) ≡ (ψ ≡ ϑ))]

(Sub) to Ax3 for p/ϕ, q/ψ, r/ϑ

(4) (ϕ ≡ ψ) ∧ ((ϕ ≡ ϑ) ≡ (ψ ≡ ϑ)) (MPLD) to (1) and (3)

(5) (ϕ ≡ ϑ) ≡ (ψ ≡ ϑ) (∧2) to (4)

3 If the usual definition of the classical implication is assumed, that is, (p → q) ≡

(¬p∨ q), then the formula ¬(ϕ∧ (¬ϕ∨ψ))∨ψ can be abbreviated as (ϕ∧ (ϕ→ ψ)) → ψ.
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(6) [(ϕ ≡ ϑ) ≡ (ψ ≡ ϑ)] ≡ [(ψ ≡ ϑ) ≡ (ϕ ≡ ϑ)]

(Sub) to Ax2 for p/(ϕ ≡ ϑ), q/(ψ ≡ ϑ)

(7) (ψ ≡ ϑ) ≡ (ϕ ≡ ϑ) (MPLD) to (5) and (6)

(8) (ϕ ≡ ϑ) (MPLD) to (2) and (7)

However, a distinguishing feature of LD is that the algebra of its for-
mulas does not form a Boolean algebra, since neither the absorption laws

p ∨ (p ∧ q) ≡ p and p ∧ (p ∨ q) ≡ p,

nor the boundness laws

(p ∨ ¬p) ≡ (q ∨ ¬q) and ¬(p ∧ ¬q) ≡ ¬(q ∧ ¬q),
are adopted as axioms, nor – as we will show later – are they LD-provable.
One of the motivations for not allowing these laws is that we do not wish
to treat two tautologies as identical in meaning if their contents are com-
pletely different. For instance, the sentences, “Professor Grzegorczyk is in
the next room or he is not there” and “President Obama is in the next room
or he is not there” are both tautologies and hence logically equivalent, but
they are derived from claims concerning different persons, so their contents
are different. To quote Prof. Grzegorczyk: “Of course, mathematicians do
not concern themselves with anything outside imagined reality, where ev-
erything consistent is acceptable. They may thus consider all tautologies to
have the same meaning. However, a philosopher ought to be more careful.”4

A further interesting feature of the logic LD is concerned with possible
derived rules allowed in LD. As we showed, the formula ¬(ϕ∧ (¬ϕ∨ψ))∨ψ
is provable in LD, but the corresponding rule, that is, the classical rule of
modus ponens:

ϕ, (¬ϕ ∨ ψ)

ψ
,

is not derivable in LD in the sense that the premises may be satisfied by
a valuation that fails to satisfy the conclusion, as we will show in Section 4.

We end this section with a short discussion of the redundancy of the
LD-axiomatization presented above. It can be easily seen that some LD-
axioms are redundant, since they follow from the others. For example, the
reflexivity of ≡ follows from its symmetry and transitivity and the fact
that every formula is equivalent to some other formula. The proof can be
formalized easily enough.

4 Personal communication, 2012-01-21
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(1) ¬¬p ≡ p Ax17

(2) (¬¬p ≡ p) ≡ ((¬¬p ≡ p) ∧ ((¬¬p ≡ p) ≡ (p ≡ p)))
(Sub) to Ax3 p/¬¬p, q/p, r/p

(3) (¬¬p ≡ p) ∧ ((¬¬p ≡ p) ≡ (p ≡ p)) MPLD to (1) and (2)

(4) (¬¬p ≡ p) ≡ (p ≡ p) (∧2) to (3)

(5) p ≡ p MPLD to (1) and (4)

Moreover, it seems intuitively plausible that Ax5 and Ax6 should be
provable from each other using DeMorgan laws. This is indeed the case,
even though the formal proofs turn out to be quite lengthy. In the same
way, we can eliminate half of the axioms Ax7 through Ax16. More precisely,
let LDred be obtained from LD by removing Ax1, Ax5, Ax7, Ax8, Ax9, Ax14,
and Ax16. Then, the following holds:

Proposition 1

The axioms Ax1, Ax5, Ax7, Ax8, Ax9, Ax14, and Ax16 are provable
in LDred.

Proof.

Ax1: Already proved above.
Ax5: We have

(p ≡ q) ≡ (¬p ≡ ¬q)
≡ [(¬p ≡ ¬q) ∧ ((¬p ∧ ¬r) ≡ (¬q ∧ ¬r))]
≡ [(¬p ≡ ¬q) ∧ (¬(p ∨ r) ≡ ¬(q ∨ r))]
≡ [(p ≡ q) ∧ ((p ∨ r) ≡ (q ∨ r))].

Even though this outline seems simple and convincing enough, as it is easy
to check that each step involves only substitutions that are directly justified
by axioms and do not occur in the scope of a disjunction, expanding it to
a full formal proof is surprisingly tedious. Our computer-generated proof
consists of 8 axioms and 75 applications of rules. One could plausibly find
a significantly shorter proof, but we assume it would still consist of several
dozen lines, as intuitively obvious substitutions sometimes require rather
complicated formal manipulations.

We will prove Ax16 next to be able to use it in the remaining proofs.

Ax16: ¬(p ∧ q) ≡ ¬(¬¬p ∧ ¬¬q)
≡ ¬¬(¬p ∨ ¬q)
≡ (¬p ∨ ¬q).
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Ax7: (p ∨ q) ≡ ¬¬(p ∨ q)
≡ ¬(¬p ∧ ¬q)
≡ ¬(¬q ∧ ¬p)
≡ ¬¬(q ∨ p)
≡ (q ∨ p).

Ax8: (p ∨ (q ∨ r)) ≡ ¬¬(p ∨ (q ∨ r))
≡ ¬(¬p ∧ ¬(q ∨ r))
≡ ¬(¬p ∧ (¬q ∧ ¬r))
≡ ¬((¬p ∧ ¬q) ∧ ¬r)
≡ ¬(¬(p ∨ q) ∧ ¬r)
≡ ¬¬((p ∨ q) ∨ r)
≡ ((p ∨ q) ∨ r).

Ax9: (p ≡ (p ∨ p)) ≡ (¬p ≡ ¬(p ∨ p))
≡ (¬p ≡ (¬p ∧ ¬p)),

and the last equivalence is obtained from Ax12 by substitution.

Ax14: ((p ∨ (q ∧ r)) ≡ ((p ∨ q) ∧ (p ∨ r)))
≡ (¬(p ∨ (q ∧ r)) ≡ ¬((p ∨ q) ∧ (p ∨ r)))
≡ ((¬p ∧ ¬(q ∧ r)) ≡ (¬(p ∨ q) ∨ ¬(p ∨ r)))
≡ ((¬p ∧ (¬q ∨ ¬r)) ≡ ((¬p ∧ ¬q) ∨ (¬p ∧ ¬r))),

and again, the last element of the equivalence chain is obtained by substi-
tution, this time from Ax13. �

The mostly computer-generated full formal proofs and program sources
are available from the authors upon request. In Section 4 we will show that
all axioms of LDred are independent from each other.

3. Logic LD: semantics

The logic LD is originally given by Hilbert-style axiomatization. So, a natu-
ral problem to be solved is to provide a sound as well as complete semantics
for LD. In this section, on the basis of some modifications of non-Fregean
models for the logic SCI, we define a suitable class of structures for LD, and
then we prove its soundness and completeness. First, we introduce some
useful notions.

A structure (U,⊕,⊗) is said to be a distributive bisemilattice whenever
the following hold, for all a, b, c ∈ U and for any ⊙ ∈ {⊗,⊕}:

72



Logic of Descriptions

• a⊙ b = b⊙ a, (commutativity of ⊗,⊕)
• a⊙ (b⊙ c) = (a⊙ b) ⊙ c, (associativity of ⊗,⊕)
• a⊙ a = a, (idempotency of ⊗,⊕)
• a⊕ (b⊗ c) = (a⊕ b) ⊗ (a⊕ c), (distributivity of ⊗ over ⊕)
• a⊗ (b⊕ c) = (a⊗ b) ⊕ (a⊗ c). (distributivity of ⊕ over ⊗)

A de Morgan bisemilattice is a structure (U,∼,⊕,⊗) such that (U,⊕,⊗)
is a distributive bisemilattice and for all a, b ∈ U , the following hold:
• ∼∼a = a,
• ∼(a⊕ b) = ∼a ⊗∼b.

AGrzegorczyk algebra is a structure (U,∼,⊕,⊗, ◦) such that (U,∼,⊕,⊗)
is a de Morgan bisemilattice and for all a, b, c ∈ U , the following hold:
• a ◦ b = b ◦ a,
• a ◦ b = ∼a ◦ ∼b,
• a ◦ b = (a ◦ b) ⊗ ((a ◦ c) ◦ (b ◦ c)),
• a ◦ b = (a ◦ b) ⊗ ((a⊕ c) ◦ (b⊕ c)),
• a ◦ b = (a ◦ b) ⊗ ((a⊗ c) ◦ (b⊗ c)).

Fact 2

A structure (U,∼,⊕,⊗, ◦) is a Grzegorczyk algebra if and only if the
following conditions hold, for all a, b, c ∈ U :

(LD1) a ◦ b = b ◦ a,

(LD2) a ◦ b = (a ◦ b) ⊗ ((a ◦ c) ◦ (b ◦ c)),
(LD3) a ◦ b = ∼a ◦ ∼b,
(LD4) a ◦ b = (a ◦ b) ⊗ ((a⊕ c) ◦ (b⊕ c)),

(LD5) a ◦ b = (a ◦ b) ⊗ ((a⊗ c) ◦ (b⊗ c)),

(LD6) a⊕ b = b⊕ a,

(LD7) a⊕ (b⊕ c) = (a⊕ b) ⊕ c,

(LD8) a⊕ a = a,

(LD9) a⊗ b = b⊗ a,

(LD10) a⊗ (b⊗ c) = (a⊗ b) ⊗ c,

(LD11) a⊗ a = a,

(LD12) a⊗ (b⊕ c) = (a⊗ b) ⊕ (a⊗ c),

(LD13) a⊕ (b⊗ c) = (a⊕ b) ⊗ (a⊕ c),

(LD14) ∼(a⊕ b) = ∼a ⊗∼b,
(LD15) ∼(a⊗ b) = ∼a ⊕∼b,
(LD16) ∼∼a = a.
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It is worth emphasizing the following fact:

Fact 3

Boolean algebras, Kleene algebras, and de Morgan algebras are Grze-
gorczyk algebras.

However, the converse of the above does not hold. The class of Grze-
gorczyk algebras is quite extensive and contains subclasses that form bases
for semantics of various non-classical logics of different types. Grzegorczyk
algebras will be a basis for structures of LD.

An LD-structure is of the form (U,∼,⊕,⊗, ◦,D), where:

• U,D are non-empty sets such that D ⊆ U ,

• (U,∼,⊕,⊗, ◦) is a Grzegorczyk algebra,

• For all a, b ∈ U , the following hold:
(a⊗ b) ∈ D if and only if a ∈ D and b ∈ D,
(a ◦ b) ∈ D if and only if a = b,
∼(a⊗∼a) ∈ D and (a⊗∼a) /∈ D.

Let M = (U,∼,⊕,⊗, ◦,D) be an LD-structure. A valuation on M is
any mapping v:V→ U such that for all LD-formulas ϕ and ψ:

• v(¬ϕ) = ∼v(ϕ),

• v(ϕ ∧ ψ) = v(ϕ) ⊗ v(ψ),

• v(ϕ ∨ ψ) = v(ϕ) ⊕ v(ψ),

• v(ϕ ≡ ψ) = v(ϕ) ◦ v(ψ).

A formula ϕ is said to be satisfied in an LD-structure by a valuation v if
and only if v(ϕ) ∈ D. It is true in M whenever it is satisfied in M by all
the valuations on M, and it is LD-valid if it is true in all LD-structures.

We may think of LD-structures as variants of non-Fregean structures,
introduced by Suszko in [Suszko, 1971]. The universe of a non-Fregean struc-
ture consists of the correlates of sentences in a given language, and its ele-
ments are known as situations or states of affairs. The correlates of true
sentences are factual situations and the correlates of false sentences (ones
whose negations are true) are counterfactual situations. Unlike Suszko, we
do not insist on logical two-valuedness but allow for sentences that are nei-
ther true nor false; their correlates are undetermined situations. The set D
is the set of factual situations.

Example 4

Let U = {0, 1, 2, 3}, D = {2, 3}, and define the operations as follows:
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∼ 0 1 2 3
3 2 1 0

◦ 0 1 2 3
0 3 0 0 0
1 0 3 0 0
2 0 0 3 0
3 0 0 0 3

⊗ 0 1 2 3
0 0 0 0 0
1 0 1 1 0
2 0 1 2 3
3 0 0 3 3

⊕ 0 1 2 3
0 0 0 3 3
1 0 1 2 3
2 3 2 2 3
3 3 3 3 3

It can be verified that the above tables indeed define a Grzegorczyk
algebra, but the absorption laws do not hold, as 1⊕ (1⊗ 0) = 1⊗ (1⊕ 0) =

0 6= 1, for instance.

First, we will prove that LD is sound with respect to the class of all LD-
structures as defined above. Thus, we need to show that all LD-axioms are
LD-valid and all LD-rules preserve LD-validity. To be more precise, a rule
of the form ϕ1,...,ϕn

ψ1,...,ψm
, for n,m ≤ 2, is called weakly LD-correct whenever the

LD-validity of ϕ1, . . . , ϕn implies the LD-validity of ψ1, . . . , ψm, and strongly
LD-correct whenever for every LD-structure M and every valuation v on M
such that M, v |= ϕ1, . . . , ϕn, it holds that M, v |= ψ1, . . . , ψm.

Proposition 5

All the LD-rules except (Sub) are strongly LD-correct. Moreover,
(Sub) is weakly LD-correct.

Proof.
The proofs of the weak correctness of (Sub) and the strong correctness

of (∧1) and (∧2) are easy to carry out. So by way of example, we will show
the strong correctness of the rule (MPLD).

Let M = (U,∼,⊕,⊗, ◦,D) be an LD-structure and v a valuation on M
such that M, v |= ϕ ≡ ψ and M, v |= ϕ. By the assumption, v(ϕ ≡ ψ) ∈ D

and v(ϕ) ∈ D. Since v(ϕ ≡ ψ) ∈ D, we have also v(ϕ) ◦ v(ψ) ∈ D, so
v(ϕ) = v(ψ). Therefore v(ψ) ∈ D. Hence, the rule MPLD is strongly LD-
correct. �

Proposition 6

All the LD-axioms are LD-valid.

Proof.
Let M = (U,∼,⊕,⊗, ◦,D) be an LD-structure and let v be a valuation

on M. We need to show that if φ is an LD-axiom, then v(φ) ∈ D.
First, by the definition of an LD-structure, we have the following: v(p) =

v(p) iff v(p) ◦ v(p) ∈ D iff v(p ≡ p) ∈ D. Hence, the axiom Ax2 is LD-valid.
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By Fact 2(LD1), for all a, b ∈ U , (a ◦ b) = (b ◦ a). Therefore, (v(p) ◦ v(q)) =

(v(q) ◦ v(p)). On the other hand, by the definition of an LD-structure, we
have also: (v(p) ◦ v(q)) = (v(q) ◦ v(p)) iff (v(p) ◦ v(q)) ◦ (v(q) ◦ v(p)) ∈ D iff
v((p ≡ q) ≡ (q ≡ p)) ∈ D. Thus, axiom Ax2 is LD-valid. In a similar way, we
can prove LD-validity of axioms Ax3–Ax16. Generally, for i ∈ {3, . . . , 17},
LD-validity of axiom Axi follows from condition (LDi−1) of Fact 2. Fur-
thermore, by the definition of an LD-structure, axiom Ax18 is obviously
LD-valid. �

Propositions 5 and 6 yield soundness of the logic LD with respect to
the class of all LD-structures:

Proposition 7 (Soundness of LD)

Every LD-provable formula is LD-valid.

Now, we will proceed to completeness. Let R be the following binary
relation on the set of all LD-formulas:

ϕ R ψ if and only if ϕ ≡ ψ is provable in LD.

Fact 8

The relation R is an equivalence relation on the set of all LD-formulas.
Moreover, R is compatible with all LD-connectives.

Proof.
Let ϕ,ψ, ϑ be any LD-formulas. Clearly, ϕ ≡ ϕ is provable in LD, so R

is reflexive. Assume ϕRψ, that is, ϕ ≡ ψ is provable in LD. By axiom Ax2,
((ϕ ≡ ψ) ≡ (ψ ≡ ϕ)) is provable in LD. Thus, by the assumption, so is
ψ ≡ ϕ, which implies ψ R ϕ. Hence, R is symmetric. Now, assume that
ϕ R ψ and ψ R ϑ, which means that ϕ ≡ ψ and ψ ≡ ϑ are provable in LD.
Since R is symmetric, ψ R ϕ, so ψ ≡ ϕ is provable in LD. By axiom Ax3,
LD proves:

(ψ ≡ ϕ) ≡ [(ψ ≡ ϕ) ∧ ((ψ ≡ ϑ) ≡ (ϕ ≡ ϑ))].

Applying the rule (MPLD), and then (∧2), we obtain that LD proves:

(ψ ≡ ϑ) ≡ (ϕ ≡ ϑ).

Applying again the rule (MPLD) and the assumption ψ ≡ ϑ, we have that
ϕ ≡ ϑ is provable in LD, which implies ϕ R ϑ. Hence, R is transitive.

Assume then that ϕ1 R ϕ2 and ψ1 R ψ2. Then ¬ϕ1 R ¬ϕ2 by Ax4, so
R is compatible with ¬. Moreover,

ϕ1 ≡ ψ1 R ϕ2 ≡ ψ1 R ψ1 ≡ ϕ2 R ψ2 ≡ ϕ2 R ϕ2 ≡ ψ2,
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so by the transitivity of R, it follows that R is also compatible with ≡. The
proofs of compatibility with ∧ and ∨ are similar. �

By the above fact, we can define a structure MLD = (U,∼,⊕,⊗, ◦,D)
as follows:
• U = { |ϕ|R : ϕ is an LD-formula }, that is, U is the set of equivalence

classes of R on the set of all LD-formulas,
• D = { |ϕ|R : ϕ is provable in LD }, that is, D is the set of equivalence

classes of R on the set of all provable formulas in LD,
• For all |ϕ|R, |ψ|R ∈ U :

∼|ϕ|R df= |¬ϕ|R, |ϕ|R ◦ |ψ|R df= |ϕ ≡ ψ|R,

|ϕ|R ⊗ |ψ|R df= |ϕ ∧ ψ|R, |ϕ|R ⊕ |ψ|R df= |ϕ ∨ ψ|R.

Proposition 9

The structure MLD is an LD-structure.

Proof.
First, we will show that MLD = (U,∼,⊕,⊗, ◦) is a Grzegorczyk algebra.

By Fact 2, it suffices to show that MLD satisfies all the conditions (LD1),
(LD2), . . . , (LD16). Let ϕ,ψ, ϑ be any LD-formulas.

Proof of (LD1)

|ϕ|R ◦ |ψ|R = |ϕ ≡ ψ|R = |ψ ≡ ϕ|R = |ψ|R ◦ |ϕ|R.

Proof of (LD2)

(|ϕ|R ◦ |ψ|R) = |ϕ ≡ ψ|R
= |(ϕ ≡ ψ) ∧ ((ϕ ≡ ϑ) ≡ (ψ ≡ ϑ))|R
= |ϕ ≡ ψ|R ⊗ |(ϕ ≡ vartheta) ≡ (ψ ≡ ϑ)|R
= (|ϕ|R ◦ |ψ|R) ⊗ ((|ϕ|R ◦ |ϑ|R) ◦ (|ψ|R ◦ |ϑ|R)).

Proof of (LD3)

|ϕ|R ◦ |ψ|R = |ϕ ≡ ψ|R = |¬ϕ ≡ ¬ψ|R
= |¬ϕ|R ◦ |¬ψ|R = ∼|ϕ|R ◦ ∼|ψ|R.

Proof of (LD4)

|ϕ|R ◦ |ψ|R = |ϕ ≡ ψ|R
= |(ϕ ≡ ψ) ∧ ((ϕ ∨ ϑ) ≡ (ψ ∨ ϑ))|R
= |ϕ ≡ ψ|R ⊗ |(ϕ ∨ ϑ) ≡ (ψ ∨ ϑ)|R
= (|ϕ|R ◦ |ψ|R)⊗ ((|ϕ|R⊕ |ϑ|R) ◦ (|ψ|R⊕ |ϑ|R)).
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Proof of (LD5)

|ϕ|R ◦ |ψ|R = |ϕ ≡ ψ|R
= |(ϕ ≡ ψ) ∧ ((ϕ ∧ ϑ) ≡ (ψ ∧ ϑ))|R
= |ϕ ≡ ψ|R ⊗ |(ϕ ∧ ϑ) ≡ (ψ ∧ ϑ)|R
= (|ϕ|R ◦ |ψ|R)⊗ ((|ϕ|R⊗ |ϑ|R) ◦ (|ψ|R⊗ |ϑ|R)).

Proof of (LD6)

|ϕ|R ⊕ |ψ|R = |ϕ ∨ ψ|R = |ψ ∨ ϕ|R = |ψ|R ⊕ |ϕ|R.

Proof of (LD7)

|ϕ|R ⊕ (|ψ|R ⊕ |ϑ|R) = |ϕ ∨ (ψ ∨ ϑ)|R = |(ϕ ∨ ψ) ∨ ϑ|R
= (|ϕ|R ⊕ |ψ|R) ⊕ |ϑ|R.

Proof of (LD8)

|ϕ|R ⊕ |ϕ|R = |ϕ ∨ ϕ|R = |ϕ|R.

Proof of (LD9)

|ϕ|R ⊗ |ψ|R = |ϕ ∧ ψ|R = |ψ ∧ ϕ|R = |ψ|R ⊗ |ϕ|R.

Proof of (LD10)

|ϕ|R ⊗ (|ψ|R ⊗ |ϑ|R) = |ϕ ∧ (ψ ∧ ϑ)|R = |(ϕ ∧ ψ) ∧ ϑ|R
= (|ϕ|R ⊗ |ψ|R) ⊗ |ϑ|R.

Proof of (LD11)

|ϕ|R ⊗ |ϕ|R = |ϕ ∧ ϕ|R = |ϕ|R.

Proof of (LD12)

|ϕ|R ⊗ (|ψ|R ⊕ |ϑ|R) = |ϕ ∧ (ψ ∨ ϑ)|R = |(ϕ ∧ ψ) ∨ (ϕ ∧ ϑ)|R
= (|ϕ|R ⊗ |ψ|R) ⊕ (|ϕ|R ⊗ |ϑ|R).

Proof of (LD13)

|ϕ|R ⊕ (|ψ|R ⊗ |ϑ|R) = |ϕ ∨ (ψ ∧ ϑ)|R = |(ϕ ∨ ψ) ∧ (ϕ ∨ ϑ)|R
= (|ϕ|R ⊕ |ψ|R) ⊗ (|ϕ|R ⊕ |ϑ|R).

Proof of (LD14)

∼(|ϕ|R ⊕ |ψ|R) = ∼|ϕ ∨ ψ|R = |¬(ϕ ∨ ψ)|R = |¬ϕ ∧ ¬ψ|R
= |¬ϕ|R ⊗ |¬ψ|R = ∼|ϕ|R ⊗∼|ψ|R.

Proof of (LD15)

∼(|ϕ|R ⊗ |ψ|R) = ∼|ϕ ∧ ψ|R = |¬(ϕ ∧ ψ)|R = |¬ϕ ∨ ¬ψ|R
= |¬ϕ|R ⊕ |¬ψ|R = ∼|ϕ|R ⊕∼|ψ|R.
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Proof of (LD16)

∼(∼|ϕ|R) = ∼|¬ϕ|R = |¬¬ϕ|R = |ϕ|R.

Hence, we have shown that (U,∼,⊕,⊗, ◦) is a Grzegorczyk algebra. Now, we
will prove that MLD satisfies all other conditions required in the definition
of LD-structures. Clearly, U and D are non-empty sets such that D ⊆ U .
By the definition of MLD, for any formula ϕ: |ϕ|R ∈ D if and only if ϕ
is provable in LD. Let |ϕ|R, |ψ|R ∈ U . Then, |ϕ|R ⊗ |ψ|R = |ϕ ∧ ψ|R ∈ D

iff ϕ ∧ ψ is provable in LD iff ϕ and ψ are provable in LD iff |ϕ|R ∈ D
and |ψ|R ∈ D. Therefore, |ϕ|R ⊗ |ψ|R ∈ D if and only if |ϕ|R ∈ D and
|ψ|R ∈ D. Furthermore, we have also: |ϕ|R ◦ |ψ|R = |ϕ ≡ ψ|R ∈ D iff
ϕ ≡ ψ is provable in LD iff ϕRψ iff |ϕ|R = |ψ|R. Hence, |ϕ|R ◦ |ψ|R ∈ D

if and only if |ϕ|R = |ψ|R. By axiom Ax18, for any formula ϕ, ¬(ϕ ∧ ¬ϕ)
is provable in LD, so ∼(|ϕ|R ⊗ ∼|ϕ|R) ∈ D. On the other hand, for any
formula ϕ, ϕ ∧ ¬ϕ is not provable in LD, since otherwise by Proposition 7,
it would be true in all LD-structures, which is impossible. Therefore, we
obtain: (|ϕ|R ⊗∼|ϕ|R) 6∈ D. Hence, MLD is an LD-structure. �

From now on, the structure MLD is referred to as canonical.

Proposition 10 (Completeness of LD)

For every LD-formula ϕ, if ϕ is LD-valid, then it is LD-provable.

Proof.
Let ϕ be an LD-valid formula, and let v be the valuation on MLD such

that v(ψ) = |ψ|R for every ψ. It is easy to check that v is indeed a valuation.
Now, by the assumption, v(ϕ) ∈ D, and hence ϕ is LD-provable. �

Finally, by Propositions 7 and 10, we obtain:

Theorem 11 (Soundness and Completeness of LD)
For every LD-formula ϕ, the following conditions are equivalent:

1. ϕ is LD-provable.
2. ϕ is LD-valid.

By the completeness theorem, LD-structures will be referred to as LD-
models.

Next, we consider LD-consistency.

Definition 12

Let S be a set of LD-formulas.
1. S is LD-satisfiable if there are an LD-model M and a valuation v on M

such that for every ϕ ∈ S, it holds that M, v |= ϕ.
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2. S is LD-inconsistent if there is some formula ϕ such that S ⊢ ϕ ∧ ¬ϕ.
Otherwise, S is LD-consistent.

Proposition 13

A set S of LD-formulas is LD-satisfiable if and only if S is LD-consistent.

Proof.
Assume first that S is LD-satisfiable. Let M be an LD-model and let

v be a valuation on M such that M, v |= S. Let ϕ be an LD-formula.
Suppose S ⊢ ϕ∧¬ϕ. Then, M, v |= ϕ∧¬ϕ, which means that v(ϕ∧¬ϕ) ∈ D,
so v(ϕ) ∈ D and v(¬ϕ) ∈ D, which contradicts the definition of an LD-
structure. Hence, S is LD-consistent.

Assume then that S is LD-consistent. We build a model in the same
way as the canonical model above. So, let R be the binary relation on
the set of all LD-formulas defined as: ϕRψ if and only if S ⊢ ϕ ≡ ψ. As
before, R is an equivalence relation compatible with all connectives, and
hence we can define a Grzegorczyk algebra (U,∼,⊕,⊗, ◦) from R exactly
as in the definition of the canonical model. The earlier proof works almost
verbatim. Let further D = { |ϕ|R : S ⊢ ϕ }. Again, the proof of the required
properties of D is otherwise essentially the same as before, but showing that
there is no ϕ such that both |ϕ|R ∈ D and ∼|ϕ|R ∈ D require some extra
care. Assume towards a contradiction that ϕ is a counterexample. Then it
follows from the definitions that S ⊢ ϕ and S ⊢ ¬ϕ, which contradicts the
assumption that S is LD-consistent. �

4. Some interesting properties

In [Grzegorczyk, 2011], Prof. Grzegorczyk raises important questions about
the relationship between equality of descriptions and material equivalence,
as well as the corresponding implications. Let us introduce the following
definitions:

• (p→ q) df= (¬p ∨ q) (classical implication)

• (p↔ q) df= (p→ q) ∧ (q → p) (classical equivalence)

• (p⇒ q) df= (p ≡ (p ∧ q)) (descriptive implication)

Now, the questions about relationships between descriptive and classical
equivalences as well as between descriptive and classical implications can be
formalized as follows:
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(Q1) Is the formula (p ≡ q) ≡ (p ↔ q) provable in LD?

(Q2) Is the formula (p⇒ q) ≡ (p→ q) provable in LD?

Both questions have negative answers, as the following proposition shows.

Proposition 14

1. The formula (p ≡ q) ≡ (p↔ q) is not provable in LD.

2. The formula (p⇒ q) ≡ (p→ q) is not provable in LD.

Proof.
Let (U,∼,⊕,⊗, ◦,D) be as in Example 4 above, and let v(p) = v(q) = 2.

Then

v(p → q) = ∼v(p) ⊕ v(q) = ∼2 ⊕ 2 = 1 ⊕ 2 = 2,

but

v(p ⇒ q) = v(p) ◦ (v(p) ⊗ v(q)) = 2 ◦ (2 ⊗ 2) = 2 ◦ 2 = 3.

In the same way, we see that v(p ↔ q) = 2 but v(p ≡ q) = 3. �

Next, we present some LD-provable formulas and derived rules as well as
classical results that fail in LD. Due to the excessive lengths of the formal
proofs, we omit the details of most of them, showing only outlines. The
models we use as counterexamples are listed in the Appendix.

Even though there are no explicit rules concerning disjunction, there is
a derived disjunction introduction rule.

Proposition 15

The following rule is strongly LD-correct:

ϕ

ψ ∨ ϕ

Proof.
Assume M, v |= ϕ. The formula ψ ∨ ¬ψ is LD-valid, so we get M, v |=

ϕ ∧ (ψ ∨ ¬ψ). Further,

ϕ ∧ (ψ ∨ ¬ψ) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)

≡ ((ϕ ∧ ψ) ∨ ϕ) ∧ ((ϕ ∧ ψ) ∨ ¬ψ)

≡ ((ϕ ∨ ϕ) ∧ (ψ ∨ ϕ)) ∧ ((ϕ ∧ ψ) ∨ ¬ψ),

whence M, v |= ψ ∨ ϕ. �
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Proposition 16

The formula (p ≡ p) ≡ (q ≡ q) is not LD-provable.

Proof.
See Example 36 in the Appendix. �

Proposition 17

The formula ¬(p ≡ ¬p) is not LD-provable.

Proof.
See Example 38 in the Appendix. Now, actually for any a ∈ U , it holds

that ∼(a ◦ ∼a) = 2 /∈ D, so there is no valuation v such that

M, v |= ¬(p ≡ ¬p). �

Note that there cannot be any LD-model M and valuation v such that
M, v |= p ≡ ¬p, as v(p ∧ ¬p) /∈ D but v(p ∨ ¬p) ∈ D.

Fact 3 shows that many familiar types of algebras are also Grzegorczyk
algebras. However, there are Grzegorczyk algebras that do not belong to any
of those types, and they often seem to be complicated and difficult to un-
derstand intuitively. However, they do illustrate various unexpected aspects
of LD. For instance, we can show the failure of the classical modus ponens
rule, despite the provability of the corresponding formula, by constructing
a suitable model and choosing a valuation that satisfies the premises but not
the supposed conclusion. Moreover, it follows directly from the definition of
an LD-model that if a formula ϕ is satisfied in a model M by a valuation v,
then ¬ϕ is not satisfied by v in M, but the converse does not hold, as we
saw above. This trait of LD contrasts strongly with most other well-known
logics, that is, ones that follow the negation clause of Tarski’s truth defini-
tion. On the other hand, LD is also quite unlike intuitionistic logic, as there
is no negation introduction rule, but the axioms include DeMorgan’s laws
and double negation is treated classically. It follows from this combination of
DeMorgan’s laws, a classical conjunction, and a non-standard negation, that
also disjunction behaves in an unexpected way. Indeed, the formula p ≡ ¬p
is unsatisfiable and (p ≡ ¬p) ∨ ¬(p ≡ ¬p) is a tautology, but ¬(p ≡ ¬p) is
not provable. Hence, the connection between the truth values of a disjunc-
tion and the disjuncts is less definite than in classical logic. This property is,
at least to a degree, in accordance with the philosophical motivations that
LD is based on, as the LD-provability of a formula gives us information not
only of its necessary truth, but also of its connection to the axioms.

The soundness of LD with respect to the class of LD-models allows us
to derive further unprovability results.
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Proposition 18
The following formulas are not provable in LD:

1. (ϕ ∨ (ϕ ∧ ψ)) ≡ ϕ.
2. (ϕ ∧ (ϕ ∨ ψ)) ≡ ϕ.
3. (ϕ ∨ ¬ϕ) ≡ (ψ ∨ ¬ψ).
4. (ϕ ∧ ¬ϕ) ⇒ ψ.
5. ϕ⇒ (ψ ∨ ¬ψ).

Moreover, the following rule is not strongly LD-correct:

(∨1)
ϕ,¬ϕ ∨ ψ

ψ
.

Proof.
For (1) and (2), see Example 34 in the Appendix. For (3), (4), and (5),

see Example 35. For (∨1), see Example 37. �

Note that the formulas (3), (4), and (5) are instances of the classical
paradoxes of equivalence and implication: “any true statements are equiva-
lent to each other”, “false implies everything”, and “the truth is implied by
anything”, respectively. Hence their failure indicates that LD indeed avoids
these paradoxes.

Now, we can prove that all the axioms of LDred are independent
of each other. By a quasi LD-structure we will mean a structure M =
(U,∼,⊗,⊕, ◦,D) such that U,D are nonempty sets, D ⊆ U , ∼ is a unary
operation on U and ⊗,⊕, ◦ are binary operations on U . The notions of val-
uation, satisfaction, and the truth in a quasi LD-structure are defined in
the same way as for LD-models.

Proposition 19
Let S = {Ax2,Ax3,Ax4,Ax6,Ax10,Ax11,Ax12,Ax13,Ax15,Ax17,Ax18}.

Then, for each ϕ ∈ S, there is a quasi LD-structure Mϕ such that Mϕ 6|= ϕ

but for each ψ ∈ S \ ϕ, it holds that Mϕ |= ψ.

Proof.
We will list the structures in the Appendix. �

So, the set S forms an independent set of axioms for LD.

5. Alternative versions of LD

During discussions about LD in seminar meetings, some alternative forms
of Ax3 were suggested. One of the motivations for adopting Ax3 was to ex-
press the transitivity of descriptive equivalence, but at least superficially,
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Ax3 appears to say something stronger. Therefore, it was natural to con-
sider alternative versions and their respective consequences. As we men-
tioned above in Section 2, the original version of Ax3 as given in [Grzegor-
czyk, 2011] was different, but our version is the intended one, as published
in Errata [2012]. We will now discuss the logics obtained by replacing Ax3
with two alternative forms: Ax3∗ and Ax3′. The axiom Ax3∗ is the origi-
nal version presented in [Grzegorczyk, 2011], whereas Ax3′ was proposed
by Stanis law Krajewski, and it is already mentioned in the Errata. These
axioms have the following forms:

Ax3
∗ (p ≡ q) ≡ [(p ≡ r) ≡ (q ≡ r)],

Ax3
′ [(p ≡ q) ∧ (q ≡ r)] ⇒ (p ≡ r).

Recall that ⇒ is an LD-implication defined as:

ϕ⇒ ψ df= ϕ ≡ (ϕ ∧ ψ).

Thus, the explicit form of axiom Ax3′ is:

[(p ≡ q) ∧ (q ≡ r)] ≡ [(p ≡ q) ∧ (q ≡ r) ∧ (p ≡ r)].

By LD
∗ (resp. LD

′) we will denote the logic obtained from LD by replacing
the axiom Ax3 with Ax3∗ (resp. Ax3′). It is again easy to see that both logics
are consistent, since under the interpretation of ≡ as the usual classical
equivalence, both axioms Ax3∗ and Ax3′ are classical tautologies.

First, we will discuss the logic LD
∗. We can actually prove Ax3 in LD

∗,
as the following proof shows:
(1) [(p ≡ q) ≡ ((p ≡ r) ≡ (q ≡ r))] ≡

≡ [((p ≡ q) ≡ ((p ≡ r) ≡ (q ≡ r)))∧
∧(((p ≡ q) ∧ (p ≡ q)) ≡ (((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q)))]

(Sub) to Ax6 for p/(p ≡ q), q/((p ≡ r) ≡ (q ≡ r)), r/(p ≡ q)

(2) (p ≡ q) ≡ ((p ≡ r) ≡ (q ≡ r)] Ax3
∗

(3) ((p ≡ q) ≡ ((p ≡ r) ≡ (q ≡ r)))∧
∧(((p ≡ q) ∧ (p ≡ q)) ≡ (((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q)))

(MPLD) to (1) and (2)

(4) ((p ≡ q) ∧ (p ≡ q)) ≡ (((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q)) (∧2) to (3)

(5) [((p ≡ q) ∧ (p ≡ q)) ≡ (((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q))] ≡
≡ {(((p ≡ q) ∧ (p ≡ q)) ≡ (p ≡ q)) ≡

≡ ((((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q)) ≡ (p ≡ q))}
(Sub) to Ax3∗ for p/((p ≡ q) ∧ (p ≡ q)),

q/(((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q)), r/(p ≡ q)
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(6) (((p ≡ q) ∧ (p ≡ q)) ≡ (p ≡ q)) ≡
≡ ((((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q)) ≡ (p ≡ q))

(MPLD) to (4) and (5)

(7) (p ≡ q) ≡ ((p ≡ q) ∧ (p ≡ q)) (Sub) to Ax12 for p/(p ≡ q)

(8) [(p ≡ q) ≡ ((p ≡ q) ∧ (p ≡ q))] ≡ [((p ≡ q) ∧ (p ≡ q)) ≡ (p ≡ q)]

(Sub) to Ax2 for p/(p ≡ q), q/((p ≡ q) ∧ (p ≡ q))

(9) ((p ≡ q) ∧ (p ≡ q)) ≡ (p ≡ q) (MPLD) to (7) and (8)

(10) (((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q)) ≡ (p ≡ q) (MPLD) to (6) and (9)

(11) (((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q)) ≡ ((p ≡ q) ∧ ((p ≡ r) ≡ (q ≡ r)))

(Sub) to Ax10

for p/((p ≡ r) ≡ (q ≡ r)), q/(p ≡ q)

(12) [(((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q)) ≡ (p ≡ q)] ≡
≡ {[(((p ≡ r) ≡ (q ≡ r))∧(p ≡ q)) ≡ ((p ≡ q)∧((p ≡ r) ≡ (q ≡ r)))] ≡

≡ [(p ≡ q) ≡ ((p ≡ q) ∧ ((p ≡ r) ≡ (q ≡ r)))]}
(Sub) to Ax3∗ for p/(((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q)),

q/(p ≡ q), r/((p ≡ q) ∧ ((p ≡ r) ≡ (q ≡ r)))

(13) [(((p ≡ r) ≡ (q ≡ r)) ∧ (p ≡ q)) ≡ ((p ≡ q) ∧ ((p ≡ r) ≡ (q ≡ r)))] ≡
≡ [(p ≡ q) ≡ ((p ≡ q) ∧ ((p ≡ r) ≡ (q ≡ r)))]

(MPLD) to (10) and (12)

(14) (p ≡ q) ≡ ((p ≡ q) ∧ ((p ≡ r) ≡ (q ≡ r))) (MPLD) to (11) and (13).

Thus, we get the following proposition.

Proposition 20

Every LD-formula ϕ that is provable in LD is also provable in LD
∗.

It turns out that replacing Ax3 with Ax3∗ defeats the purpose of intro-
ducing a new connective, as the following proposition shows:

Proposition 21

The following rules are strongly correct in LD
∗:

p↔ q

p ≡ q

p ≡ q

p↔ q

85



Joanna Golińska-Pilarek and Taneli Huuskonen

Proof.
First, it is easy to see that (p ≡ p) ≡ (q ≡ q) holds for any p, q, as both

sides are equal to (p ≡ q) ≡ (p ≡ q), by Ax3∗ and symmetry. Let us denote
this common value by 1. Then,

(p ≡ 1) ≡ ((p ≡ 1) ≡ (1 ≡ 1))

≡ ((p ≡ 1) ≡ 1),

whence p ≡ (p ≡ 1). In particular, if ϕ is provable in LD
∗, then so is ϕ ≡ 1.

Hence,

p ∨ 1 ≡ p ∨ (p ∨ ¬p)
≡ p ∨ ¬p
≡ 1.

Moreover,
p ≡ (p ≡ 1)

≡ (p ≡ 1) ∧ ((p ∧ 1) ≡ (1 ∧ 1))

≡ p ∧ (p ∧ 1),

so (p ∧ 1) ≡ p for all p.
If we substitute 1 for q in axioms Ax5 and Ax6 and simplify, we get,

respectively,

p ≡ p ∧ ((p ∧ r) ≡ r),

p ≡ p ∧ (p ∨ r).
So, it follows that

(p ∧ q) ≡ [(p ∧ q) ∧ ((p ∧ q) ≡ p) ∧ ((p ∧ q) ≡ q)].

By applying DeMorgan’s laws and some further manipulations, we also get

(¬p ∧ ¬q) ≡ [(¬p ∧ ¬q) ∧ ((p ∧ q) ≡ p) ∧ ((p ∧ q) ≡ q)].

So,

(p ↔ q) ≡ [(p ↔ q) ∧ ((p ∧ q) ≡ p) ∧ ((p ∧ q) ≡ q)].

From this and the transitivity of ≡, the claim follows.
On the other hand, we can prove the tautology q ↔ q as in the classical

case, and hence (q ↔ q) ≡ 1 and further r ≡ (r ≡ (q ↔ q)), for any r.
Moreover,

(p ≡ q) ≡ [(p ≡ q) ∧ ((p ↔ q) ≡ (q ↔ q))],

and therefore (p ≡ q) ≡ ((p ≡ q) ∧ (p↔ q)). �
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So, LD
∗ is effectively just an unnecessarily complex reformulation of

classical propositional logic. It also follows that the converse of Proposi-
tion 20 does not hold.

Let us now consider Ax3′. We can define an LD
′-model by changing the

definition of an LD-model appropriately, that is, by replacing the condition
a◦b = (a◦b)⊗((a◦c)◦(b◦c)) with (a◦b)⊗(b◦c) = (a◦b)⊗(b◦c)⊗(a◦c). Now,
every LD

′-provable formula is true in every LD
′-model, which can be proved

essentially in the same way as in the case of LD. However, the converse
implication does not hold. Let ϕ be the formula (p ≡ q) ≡ ((p ∧ p) ≡ q).
The structure presented in Example 39 satisfies all LD

′-axioms and rules but
does not satisfy ϕ, which means that ϕ is not LD

′-provable. On the other
hand, ϕ is clearly true in every LD

′-model, as ≡ is interpreted as equality.
Moreover, the philosophical motivations for LD suggest that ϕ should be
true. Therefore, we will not study LD

′ any further.

6. Conclusions

We have defined the logic LD in terms of syntactic deduction rules and
axioms, defined a corresponding semantics, and proved a soundness and
completeness theorem. We have given several examples of classical laws that
hold in LD as well as laws that fail in LD. We have shown that the original
axiomatization is redundant and found an independent set of axioms. We
have considered two proposed alternative forms of Ax3 and found both of
them unsatisfying as replacements for Ax3.

In studying the properties of LD, we have found computer-assisted
methods indispensable. We developed the following tools for LD:
• Two proof checkers, accepting two different input syntaxes and using

different methods for checking, generally being as independent as pos-
sible apart from the fact that both were written by the second author.

• An automatic proof builder, which accepts a set of targets and some
intermediate steps and attempts to output a full formal proof of the
targets, in a format suitable for either checker or LATEX.

• A model checker, which inputs a finite structure in the signature of LD

as well as some deduction rules and formulas, and checks whether the
structure obeys the rules and satisfies the formulas.
As we mentioned before, the programs and sample input and output

files are available on request.
There are several interesting questions about LD that we have not an-

swered here.
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1. Is LD decidable?
We conjecture LD has the finite model property, formulated in the fol-
lowing way due to the non-classical negation:
For every formula ϕ such that there are an LD-model M and a valua-
tion v on M such that M, v 6|= ϕ, there are a finite LD-model M′ and
a valuation v on M′ such that M′, v′ 6|= ϕ.
For logics with a Tarskian negation, this formulation is, of course, equiv-
alent with the usual one. In the case of LD, however, this is the form that
we need. Indeed, if the conjecture is true, we can prove the decidability
of LD in the usual way.

2. If LD is decidable, what is the complexity of deciding whether an LD-
formula is provable?
Our conjecture about the finite model property, mentioned above, is
based on a construction of a finite model whose size is doubly expo-
nential in the size of the formula. If the construction is correct, there
is an obvious decision algorithm that runs in doubly exponential space
and hence triply exponential time: simply search for a small enough
counterexample.

3. Is the classical modus ponens rule weakly correct for LD?
We have a counterexample showing that MP is not strongly correct.
However, we do not know whether it is weakly correct.

4. Are there other interesting variants of LD?
We showed that LD

∗ is too strong and LD
′ too weak to formalize the

motivating philosophical ideas. However, Ax3′ appears plausible in its
own right, and instead of replacing Ax3 with Ax3′, one could simply
add Ax3′ to LD. So far, our preliminary results suggest such an extension
would be similar to LD, with only minor technical differences.

5. Can one generate LD-proofs fully automatically in practice?
Our prover needs a human-generated outline consisting of intermediate
steps, which it then attempts to expand to a full proof by applying some
derived rules. If the outline is not sufficiently detailed, the prover fails.
The non-classical nature of negation and disjunction prevents a straight-
forward implementation of a tableau-based prover. So far, we have not
found a practical proof strategy for LD. Of course, a brute-force search
is possible in principle.

6. Is there a normal form for LD-formulas?
A suitable normal form may simplify the task of finding an automatic
proof system, among other things.
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Appendix

In this section, we will list the models that show the unprovability claims
made in the main text.

Example 22

Here is the simplest possible LD-model, unique up to isomorphism.

U = {0, 1}, D = {1}

∼ 0 1

1 0

◦ 0 1

0 1 0

1 0 1

⊗ 0 1

0 0 0

1 0 1

⊕ 0 1

0 0 1

1 1 1

Example 23

This model shows that Ax2 is independent of LDred. That is, the for-
mula (p ≡ q) ≡ (q ≡ p) is not true in it, but all other axioms of LDred

are.

U = {0, 1, 2, 3, 4, 5}, D = {3, 4, 5}; v(p) = 0, v(q) = 2.

∼ 0 1 2 3 4 5

5 4 3 2 1 0

◦ 0 1 2 3 4 5

0 3 1 1 1 1 1

1 1 4 1 2 1 2

2 2 1 4 1 2 1

3 1 2 1 4 1 2

4 2 1 2 1 4 1

5 1 1 1 1 1 3

⊗ 0 1 2 3 4 5

0 0 1 2 1 2 1

1 1 1 1 1 1 1

2 2 1 2 1 2 1

3 1 1 1 3 3 3

4 2 1 2 3 4 3

5 1 1 1 3 3 5

⊕ 0 1 2 3 4 5

0 0 2 2 4 4 4

1 2 1 2 3 4 3

2 2 2 2 4 4 4

3 4 3 4 3 4 3

4 4 4 4 4 4 4

5 4 3 4 3 4 5
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Example 24

The axiom (p ≡ q) ≡ [(p ≡ q) ∧ ((p ≡ r) ≡ (q ≡ r))] (Ax3) is indepen-
dent.

U = {0, 1, 2, 3}, D = {2, 3}; v(p) = 0, v(q) = 0, v(r) = 0.

∼ 0 1 2 3

3 2 1 0

◦ 0 1 2 3

0 2 0 0 0

1 0 3 0 0

2 0 0 3 0

3 0 0 0 2

⊗ 0 1 2 3

0 0 0 0 0

1 0 1 0 0

2 0 0 2 3

3 0 0 3 3

⊕ 0 1 2 3

0 0 0 3 3

1 0 1 3 3

2 3 3 2 3

3 3 3 3 3

Example 25

The axiom (p ≡ q) ≡ (¬p ≡ ¬q) (Ax4) is independent.

U = {0, 1, 2, 3}, D = {2, 3}; v(p) = 1, v(q) = 1.

∼ 0 1 2 3

3 2 1 0

◦ 0 1 2 3

0 2 0 0 0

1 0 3 0 0

2 0 0 2 0

3 0 0 0 2

⊗ 0 1 2 3

0 0 0 0 0

1 0 1 0 0

2 0 0 2 3

3 0 0 3 3

⊕ 0 1 2 3

0 0 0 3 3

1 0 1 3 3

2 3 3 2 3

3 3 3 3 3

Example 26

The axiom (p ≡ q) ≡ [(p ≡ q)∧ ((p∧r) ≡ (q∧r))] (Ax6) is independent.

U = {0, 1, 2, 3}, D = {2, 3}; v(p) = 3, v(q) = 3, v(r) = 1.

∼ 0 1 2 3

3 2 1 0

◦ 0 1 2 3

0 3 0 0 0

1 0 2 0 0

2 0 0 2 0

3 0 0 0 3

⊗ 0 1 2 3

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

⊕ 0 1 2 3

0 0 1 2 3

1 1 1 3 3

2 2 3 2 3

3 3 3 3 3

Example 27

The axiom (p ∧ q) ≡ (q ∧ p) (Ax10) is independent.

U = {0, 1, 2, 3}, D = {2, 3}; v(p) = 0, v(q) = 1.

∼ 0 1 2 3

3 2 1 0

◦ 0 1 2 3

0 2 0 0 0

1 0 2 0 0

2 0 0 2 0

3 0 0 0 2

⊗ 0 1 2 3

0 0 0 0 0

1 1 1 1 1

2 0 0 2 2

3 1 1 3 3

⊕ 0 1 2 3

0 0 0 2 2

1 1 1 3 3

2 2 2 2 2

3 3 3 3 3
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Example 28

The axiom (p ∧ (q ∧ r)) ≡ ((p ∧ q) ∧ r) (Ax11) is independent.

U = {0, 1, 2, 3, 4, 5}, D = {3, 4, 5}; v(p) = 0, v(q) = 0, v(r) = 4.

∼ 0 1 2 3 4 5

5 4 3 2 1 0

◦ 0 1 2 3 4 5

0 3 2 2 2 2 2

1 2 3 2 2 2 2

2 2 2 3 2 2 2

3 2 2 2 3 2 2

4 2 2 2 2 3 2

5 2 2 2 2 2 3

⊗ 0 1 2 3 4 5

0 0 0 2 2 1 1

1 0 1 2 2 1 1

2 2 2 2 2 2 2

3 2 2 2 3 3 3

4 1 1 2 3 4 4

5 1 1 2 3 4 5

⊕ 0 1 2 3 4 5

0 0 1 2 3 4 4

1 1 1 2 3 4 4

2 2 2 2 3 3 3

3 3 3 3 3 3 3

4 4 4 3 3 4 5

5 4 4 3 3 5 5

Example 29

The axiom p ≡ (p ∧ p) (Ax12) is independent.

U = {0, 1, 2, 3}, D = {2, 3}; v(p) = 0.

∼ 0 1 2 3

3 2 1 0

◦ 0 1 2 3

0 2 1 1 1

1 1 2 1 1

2 1 1 2 1

3 1 1 1 2

⊗ 0 1 2 3

0 1 1 1 1

1 1 1 1 1

2 1 1 2 2

3 1 1 2 3

⊕ 0 1 2 3

0 0 1 2 2

1 1 1 2 2

2 2 2 2 2

3 2 2 2 2

Example 30

The axiom (p ∧ (q ∨ r)) ≡ ((p ∧ q) ∨ (p ∧ r)) (Ax13) is independent.

U = {0, 1, 2, 3}, D = {2, 3}; v(p) = 1, v(q) = 1, v(r) = 2.

∼ 0 1 2 3

3 2 1 0

◦ 0 1 2 3

0 2 0 0 0

1 0 2 0 0

2 0 0 2 0

3 0 0 0 2

⊗ 0 1 2 3

0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 0 2 3

⊕ 0 1 2 3

0 0 1 3 3

1 1 1 3 3

2 3 3 2 3

3 3 3 3 3

Example 31

The axiom ¬(p ∨ q) ≡ (¬p ∧ ¬q) (Ax15) is independent.

U = {0, 1, 2, 3}, D = {2, 3}; v(p) = 0, v(q) = 1.

∼ 0 1 2 3

2 3 0 1

◦ 0 1 2 3

0 2 0 0 0

1 0 2 0 0

2 0 0 2 0

3 0 0 0 2

⊗ 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 2 2

3 0 1 2 3

⊕ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

3 3 3 3 3
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Example 32

The axiom ¬¬p ≡ p (Ax17) is independent.

U = {0, 1, 2, 3, 4, 5, 6, 7}, D = {4, 5, 6, 7}; v(p) = 1.

∼ 0 1 2 3 4 5 6 7

7 6 5 4 3 1 2 0

◦ 0 1 2 3 4 5 6 7

0 4 0 0 0 0 0 0 0

1 0 4 0 0 0 0 0 0

2 0 0 4 0 0 0 0 0

3 0 0 0 4 0 0 0 0

4 0 0 0 0 4 0 0 0

5 0 0 0 0 0 4 0 0

6 0 0 0 0 0 0 4 0

7 0 0 0 0 0 0 0 4

⊗ 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 0 1 1 1 1 1

2 0 0 2 2 2 2 2 2

3 0 1 2 3 3 3 3 3

4 0 1 2 3 4 4 4 4

5 0 1 2 3 4 5 4 5

6 0 1 2 3 4 4 6 6

7 0 1 2 3 4 5 6 7

⊕ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 1 3 3 4 5 6 7

2 2 3 2 3 4 5 6 7

3 3 3 3 3 4 5 6 7

4 4 4 4 4 4 5 6 7

5 5 5 5 5 5 5 7 7

6 6 6 6 6 6 7 6 7

7 7 7 7 7 7 7 7 7

Example 33

The axiom ¬(p ∧ ¬p) (Ax18) is independent.

U = {0, 1, 2, 3}, D = {3}; v(p) = 1.

∼ 0 1 2 3

3 2 1 0

◦ 0 1 2 3

0 3 0 0 0

1 0 3 0 0

2 0 0 3 0

3 0 0 0 3

⊗ 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 2 2

3 0 1 2 3

⊕ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

3 3 3 3 3

Example 34

In this model, the absorption law (p ∧ (p ∨ q)) ≡ p does not hold.

U = {0, 1, 2, 3}, D = {2, 3}; v(p) = 1, v(q) = 0.

∼ 0 1 2 3

3 2 1 0

◦ 0 1 2 3

0 3 0 0 0

1 0 3 0 0

2 0 0 3 0

3 0 0 0 3

⊗ 0 1 2 3

0 0 0 0 0

1 0 1 1 0

2 0 1 2 3

3 0 0 3 3

⊕ 0 1 2 3

0 0 0 3 3

1 0 1 2 3

2 3 2 2 3

3 3 3 3 3

Example 35

Here the formulas (p∨¬p) ≡ (q∨¬q), (p∧¬p) ⇒ q, and ¬q ⇒ (p∨¬p)
are not true.

U = {0, 1, 2, 3}, D = {2, 3}; v(p) = 1, v(q) = 0.
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∼ 0 1 2 3

3 2 1 0

◦ 0 1 2 3

0 3 0 0 0

1 0 3 0 0

2 0 0 3 0

3 0 0 0 3

⊗ 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 2 2

3 0 1 2 3

⊕ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

3 3 3 3 3

Example 36

In this model, the formula (p ≡ p) ≡ (q ≡ q) is not true.

U = {0, 1, 2, 3, 4, 5}, D = {3, 4, 5}; v(p) = 0, v(q) = 1.

∼ 0 1 2 3 4 5

5 4 3 2 1 0

◦ 0 1 2 3 4 5

0 5 0 0 0 0 0

1 0 3 0 0 0 0

2 0 0 5 0 0 0

3 0 0 0 5 0 0

4 0 0 0 0 3 0

5 0 0 0 0 0 5

⊗ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 0 0 2

2 0 2 2 0 0 2

3 0 0 0 3 3 3

4 0 0 0 3 4 3

5 0 2 2 3 3 5

⊕ 0 1 2 3 4 5

0 0 2 2 3 3 5

1 2 1 2 5 5 5

2 2 2 2 5 5 5

3 3 5 5 3 3 5

4 3 5 5 3 4 5

5 5 5 5 5 5 5

Example 37

In this model, the modus ponens rule is not correct. That is, the for-
mula p ∧ (p→ q) is satisfied by a valuation that does not satisfy q.

U = {0, 1, 2, 3, 4, 5}, D = {4, 5}; v(p) = 4, v(q) = 3.

∼ 0 1 2 3 4 5

5 4 3 2 1 0

◦ 0 1 2 3 4 5

0 5 0 0 0 0 0

1 0 5 0 0 0 0

2 0 0 5 0 0 0

3 0 0 0 5 0 0

4 0 0 0 0 5 0

5 0 0 0 0 0 5

⊗ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 1 0 1 1

2 0 1 2 0 1 2

3 0 0 0 3 3 3

4 0 1 1 3 4 4

5 0 1 2 3 4 5

⊕ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 1 2 4 4 5

2 2 2 2 5 5 5

3 3 4 5 3 4 5

4 4 4 5 4 4 5

5 5 5 5 5 5 5

Example 38

In this example, the formula ¬(p ≡ ¬p) is not true, even though one
can prove a contradiction from p ≡ ¬p. Thus, there cannot be a negation
introduction rule.

U = {0, 1, 2, 3}, D = {3}; v(p) = 0.

∼ 0 1 2 3

3 2 1 0

◦ 0 1 2 3

0 3 2 2 2

1 2 3 2 2

2 2 2 3 2

3 2 2 2 3

⊗ 0 1 2 3

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

⊕ 0 1 2 3

0 0 1 2 3

1 1 1 3 3

2 2 3 2 3

3 3 3 3 3
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Example 39

This example shows that the formula (p ≡ q) ≡ ((p ∧ p) ≡ q) is not
LD

′-provable.

U = {0, 1, 2, 3, 4, 5}, D = {3, 4, 5}; v(p) = 2, v(q) = 0.

∼ 0 1 2 3 4 5

5 4 3 2 1 0

◦ 0 1 2 3 4 5

0 5 1 0 0 1 1

1 1 5 4 0 1 1

2 0 4 5 1 0 0

3 0 0 1 5 4 0

4 1 1 0 4 5 1

5 1 1 0 0 1 5

⊗ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 1 0 0 1

2 0 1 1 0 0 1

3 0 0 0 4 4 4

4 0 0 0 4 4 4

5 0 1 1 4 4 5

⊕ 0 1 2 3 4 5

0 0 1 1 4 4 5

1 1 1 1 5 5 5

2 1 1 1 5 5 5

3 4 5 5 4 4 5

4 4 5 5 4 4 5

5 5 5 5 5 5 5
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Stanisław Krajewski

EMERGENCE IN MATHEMATICS?

Abstract. Emergence is difficult to define. In mathematics, a subjective, in-
deed psychological, definition of emergence seems reasonable. The following
conditions seem necessary: the appearance of surprising properties that are in-
escapably surprising, even for the expert. It is another matter whether this is
a sufficient condition for the presence of emergence. To the canonical examples
of emergence – life, mind, (self)consciousness – some mathematical examples
can be added: fractals (already proposed by other authors) and the emergence
of undecidability (and incompleteness) of natural numbers when they are con-
sidered as a structure with both addition and multiplication.

1. Emergence, an Introduction

The notion of emergence has been proposed as a means of describing situ-
ations in the material world in which growing complexity either causes the
appearance of essentially new features or provides an occasion for essentially
new features to appear. To be sure, it is not arbitrary new features that are
meant here, since some new features must necessarily appear when any
change takes place; rather, what is meant are essential, fundamentally new
features: new higher-level qualities that are “ungraspable,” that is, cannot
be grasped (or understood) from a lower level. Unfortunately, it is not obvi-
ous what these “levels” are. It is also far from clear what “ungraspability”
should mean: it can be explained as irreducibility, non-educibility, indeter-
minateness, or unexpected character of the phenomenon. Fortunately, some
examples are beyond doubt. Thus, the emergence of life, of the mind, and
of consciousness illustrate higher-level, irreducible, absolutely new features
– or rather dimensions – that cannot be grasped from a lower level, that
is, from the level of inanimate matter or unconscious life. The notion of
emergence was introduced in the 1920s. In recent decades it has been re-
vived. It is claimed that emergence would be found in various connected
structures that could be regarded as separate entities: a book by Steven
Johnson is titled Emergence: The Connected Lives of Ants, Brains, Cities,
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and Software. Other scholars refer to the internet and other self-organizing
structures, and more metaphysically minded authors use the concept of
emergence to talk about spirituality – even, as does Ken Wilbur, spiritual-
ity on a cosmic scale. The construction of hierarchies of emergence can result
in a variety of religious claims. Unsurprisingly, such claims are divergent.
Thus, Philip Clayton in the book Mind and Emergence: From Quantum
to Consciousness writes that Terrence Deacon draws Buddhist conclusions,
Harold Morowitz finds Jewish-Spinozian ones, while Nancy Murphy, Niels
Gregorsen and Clayton himself interpret such ultimate emergence in a Chris-
tian framework.

Emergence can also be described by saying that “the whole is more
than the sum of its parts,” but this is hardly helpful. Every whole built
from parts – not just collected as is the case with sets in the distributive
sense – is more than the totality of its parts. What sets emergence apart
is that it occurs when novelty is essential – another concept difficult to
define – and is not reducible to the connections linking the parts. However
these terms just used, “essential novelty” and “(ir)reducibility,” seem just as
difficult to explain as the term “emergence” itself. My aim in this paper is to
analyze a seemingly simpler, but nonetheless elusive subject, the appearance
of emergence, if there is any, in mathematics.1

2. The Psychological Character of Emergence in Mathematics

If a mathematical structure is enriched, it becomes more complicated and
one can detect in it new features and new phenomena. Sometimes these can
represent something genuinely new. If, for instance, integers are extended
to rational numbers the ordering of numbers becomes dense, and if we fur-
ther extend the structure to real numbers a new feature characterizes the
ordering – it becomes continuous. It is rather doubtful, however, whether
such phenomena, ubiquitous in mathematics, can be described as “emer-
gence.” Indeed, I feel it would trivialize the concept of emergence if it were
used in such cases. Similarly doubtful is the application of the concept of
emergence when, in the spirit of Nicholas Bourbaki, structures are gradually
expanded – from sets to ordered sets to added algebraic structures to topo-

1 This paper is based on a Polish paper „Emergencja w matematyce?”, in Struktura i
emergencja (red. Michał Heller i Janusz Mączka), Biblos, Kraków 2006, 110–118, published
also as Chapter 1 of my book Czy matematyka jest nauką humanistyczną?, Copernicus
Center Press, Kraków 2011, 11–20.
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logical ones to their combinations, etc. The problem is, then, what novel
phenomena can rightly be described as “emergent.” Are there any identi-
fiable features of mathematical situations that are necessary for emergence
to occur?

In order to move toward a solution let us consider an example that at
first glance seems promising. Passing from finite to infinite structures is very
natural in mathematics, or rather in modern mathematics, as until the 19th
century this step was considered unacceptable. Georg Cantor, however, has
introduced us to the realm of actually infinite sets. We consider longer and
longer sequences and naturally move to considering transfinite sequences,
which can be manipulated in much the same way as the finite ones. Infinite
sets, too, are treated in the same way as finite sets, or to be more specific,
operations such as taking the union of a set of sets or the powerset of a given
set, which raise no reservations in the case of finite sets, are also executed
on actually infinite sets. In fact, the possibility of the unrestricted extension
of those operations to the realm of infinite sets can be seen as the essence
of the Cantorian revolution in mathematics. It is certain that new features,
new regularities appear in the realm of infinite sets. The main novelty can
be seen in the presence of, well, infinity! Are we dealing with “emergence”
here? The answer is not easy. While we have no criterion for recognizing
emergence, it seems that the mechanism producing the new situation is
relatively clear: the potential infinity, or the potential to extend the finite
beyond any limit, leads to a jump into the actual infinity. The situation is
by no means simple, but the novelty is created by our decision to perform
a jump. Therefore, we cannot say that the result is unexpected. And it
seems to me that in order to talk about emergence it is necessary to face
something truly unexpected. Some surprise is needed, the appearance on the
higher level of something that is not simply higher, more complex, but is also
astonishing – an unforeseen feature or regularity, impossible to anticipate
at the lower level.

A necessary feature has just been formulated that must characterize
a situation in which emergence occurs, namely, the presence of something
unexpected, a surprise. This criterion is not very clear, and what may seem
worse, it is subjective. Is it useful? Is there anything surprising on the level
of infinite sets with respect to the level of finite sets? Of course, new features
appear. One of them is noteworthy, the possibility that a part be equal to
the whole, or rather as big as the whole, in the sense that there is a one-
to-one correlation of the part with the whole. This is surprising at first. A
moment later, however, the surprise disappears. The numeric equivalence of
integers with the even numbers is so simple that no surprise remains. More
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generally, the one-to-one correspondence of a set and its proper part can
be treated as a characterization of infinity (“Dedekind infinite sets”). Other
equivalences proved by Cantor, like the denumerability of the set of rational
numbers, are only slightly more difficult. Their proofs are transparent, as is
the proof of the uncountability of the set of real numbers (if the existence of
this set as a completed entity is assumed). Once understood they no longer
cause surprise.

It can be realized now that another necessary criterion has just been
formulated: to witness emergence one must not only feel a surprise, but
also sense a surprise that is impossible to overcome, an inescapable sur-
prise. Now this criterion is not just subjective, it seems purely psycho-
logical. Is this acceptable? My thesis is that the psychological nature of
emergence is unavoidable at least in the case of mathematics. I leave out
the question whether the psychological definition is appropriate for sci-
ence as well, although my guess is that some psychological dimension is
inevitable.

In the case of infinity, is the feeling of unexpected developments present
or not? It is possible to show more and more difficult theorems about infinite
sets: statements that need a lot of effort to understand. A real expert in the
field can, however, understand them so well that the difference between
them and the basic properties is only one of quantity. To witness emergence
we need, I believe, to face a qualitative difference, which even for an expert
indicates a different order of events. To answer whether the expert perceives
a qualitative difference there, we must refer to a psychological approach.
Certainly, it would be good to have an objective definition of qualitative
as distinct from merely quantitative difference in the degree of surprise
provoked by theorems. Yet to formulate such a definition seems to be just
as difficult as is the definition of emergence.

Therefore, having accepted the psychological nature of emergence, we
are looking for an example of the situation in which a new property appears,
one that is unexpected and one where the feeling of surprise is lasting (in-
dependent of the level of expertise and familiarity with the subject) so that
we can be sure that we face a genuinely new quality. If the structure gets
richer, can some new unanticipated properties appear? Properties that are
unexpected in an inescapable manner? To repeat, I do not mean here just
any new property, but an essentially new property or regularity. The re-
quirement that such a property must be inescapably unexpected defines
a necessary condition for emergence. If sufficiently many examples can be
found then, hopefully, one would be able to say whether this is a sufficient
condition as well.
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3. Mathematical examples

Mathematics of the last several decades provides some highly interesting
examples. Fractals are generally known by now, even among the mathe-
matically illiterate. Iterating simple functions produces unanticipated, im-
mensely complicated structures that are self-similar: zooming in we en-
counter the same structure again and again. The complication is infinite.
What is even more relevant in our context is that some such iterations pro-
vide a huge variety of patterns, or “landscapes.” I believe that even the
best experts are repeatedly and inescapably surprised when they study the
successive regions of the Mandelbrot set. Our psychological criterion for the
presence of emergence is satisfied.

Another example is provided by the mathematics of deterministic chaos,
initiated over a hundred years ago and developed in a deeper way only rel-
atively recently. Even in completely deterministic processes tiny changes in
the initial conditions can produce huge differences in results. This can ex-
plain why surprise is an inescapable property of models of weather. Some
authors call this impossibility to predict the result emergence. More sys-
tematically, similar processes are studied in the theories of complexity, in
which various phenomena of growing complexity are investigated. Some of
them are generated by iterated applications of very simple rules. For exam-
ple, John Conway’s game Life is played on an infinite plane grid of regular
squares where an initial arbitrary finite pattern of black squares among the
remaining white ones is consecutively modified according to fixed rules that
establish the color of a given square based on the colors of its immediate
neighbors at the previous step. The resulting patterns undergo an evolution,
and the process can be somewhat similar to the movement of schematic or-
ganisms that grow, shift, multiply, get “old,” etc. A closer investigation
has been made possible due to computers. A similar realm, that of finite
automata, has been classified by Stephen Wolfram. In his impressive and
highly unconventional book, A New Kind of Science, published in 2002,
he attempts to demonstrate that all sorts of physical phenomena can be
represented as iterations of simple algorithms. Wolfram considers rows of
black and white cells that change according to fixed rules; in each step the
color of a cell depends only on the colors of itself and its immediate neigh-
bors in the previous step. Even in this simple space some rules determine
extremely complicated behavior that is neither periodic nor completely ran-
dom. Wolfram is ready to say that the whole universe is an automaton, or
a gigantic computer. This view can be seen as the ultimate expression of
the Pythagorean approach to nature. In the last analysis, our universe and
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everything in it would be an automaton. This includes us, our brains and
ourselves – or “our selves.”

While the above vision looks extreme, the fact is that some finitely
describable structures can contain more complex, and actually arbitrarily
complex, phenomena. The existence of such universal structures has been
known in the foundations of mathematics since 1936, when Alan Turing de-
fined what we today call a universal Turing machine. With a (coded) natural
number as input, it can imitate another Turing machine, and each Turing
machine can be simulated that way, given an appropriate parameter. This
looks like emergence but actually the matter is no longer surprising as soon
as we realize that the parameter encodes the program of the given machine
that is to be simulated. Therefore, according to our criteria, emergence is
not taking place here. Still, the example indicates that perhaps one can find
emergence in mathematical structures analyzed with the help of methods
employed in modern mathematical logic.

4. Logical foundations of mathematics

The so-called nonstandard models come to mind when mathematical
logic is evoked in our context. Theories in first order logic have unintended
models; that is, there exist mathematical structures that satisfy all axioms
of a given theory but are not isomorphic with the “standard” model that
served as the source of the axioms. In the case of set theory we are faced with
the Skolem paradox: whereas set theory (formulated in first order logic) is
supposed to describe all sets, of all possible cardinalities, it admits countable
models that can be constructed from natural numbers. Each of them does
contain higher infinities in the sense of the model, since there is no function
in the sense of the model inside the model that would establish a one-to-one
correlation of the sets of different cardinalities. The sets are countable only
from the outside. This situation is well understood by logicians, for whom
the initial paradox disappears.

Set theory was conceived as maximal, referring to all sets. At the other
end there are theories of natural numbers 0, 1, 2, 3, . . .. All of them, if in first
order logic, admit uncountable models. This is as surprising as Skolem’s
paradox. (It can be mentioned here that the first nonstandard model for
arithmetic was also constructed by Skolem.) And actually there are many
complicated nonstandard models of arithmetic, countable and uncountable.
Each of them contains infinite numbers, that is, numbers bigger than each
standard number 0, 1, 2, 3, . . .. But, again, this infinity is perceived only
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from outside; inside the model all elements have the same status as the
standard numbers. It follows, and this is well understood by logicians, that
it is impossible to express the notion of a standard number inside the model.

Nonstandard models have some properties that can be linked to emer-
gence: they are unexpected, at least initially. However, the surprise disap-
pears for anyone who is initiated into the theory of models of first order
logic. One quickly gets used to the fact that first order logic emerges as
too weak to describe the intended model properly. In addition, nonstandard
models of arithmetic introduce a more sophisticated view of the aforemen-
tioned passage from the finite to the infinite. Mathematicians are free to
produce all sorts of abstract models; they can be made of anything and are
considered acceptable as long as they satisfy all the axioms. One of the most
fruitful methods is due to Henkin: models can be constructed from abstract
linguistic entities, and if we begin with an arbitrary consistent set of sen-
tences we can add all the necessary individual constants, identify some of
them, and obtain a model of these sentences. The existence of an immense
variety of models ceases to be startling. More to the point, the surprise
caused by non-standard models does not seem inescapable. It is, therefore,
doubtful that we are really facing emergence here.

And yet in this area of mathematics, or rather the logical foundations
of mathematics, there exists a phenomenon that is, in my view, fully worthy
of the name “emergence.” It can be found in the realm of natural numbers:
not in nonstandard models, however, but in the familiar standard model.
The concept of a natural number seems very . . . natural. It seems that
the operation of successor, “+1”, describes the concept. We begin with 0

and iterate the operation indefinitely. One can remark that the concept of
unlimited iteration is itself very close to the concept of a natural number.
Yet, still, the resulting set of natural numbers, N, seems transparent. We
have always known that there are many difficult problems involving natural
numbers, yet their totality seems transparent enough to assume that there
exists, at least in principle, a procedure to decide whether a given statement
is true or not. And, indeed, there is such a procedure if the language is first
order and its vocabulary consists of standard logical concepts (sentential
connectives and quantifiers binding variables ranging over natural numbers)
and the successor operation. In fact a natural set of axioms is complete;
each sentence in this language can be either logically derived or refuted
from the axioms. What is more, a slight extension of the theory preserves
decidability. Namely, when the operation of addition is added, one gets
Presburger Arithmetic. In 1929, Mojżesz Presburger demonstrated that the
first order sentences true in (N,+) form a complete, decidable theory, which
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can be axiomatized by a series of natural axioms. Incidentally, when only
multiplication is considered, the resulting theory is also decidable. (This was
proved by, again, Skolem.) It would seem, then, that nothing unexpected
can happen, and that the elementary theory of natural numbers, taken
with addition and multiplication, is decidable, as should be also the theory
extended by more complicated operations, like exponentiation. That was
indeed the expectation of Hilbert and all logicians until 1930. But they
were wrong.

Indeed, this is common knowledge now: that standard arithmetic in-
volving both addition and multiplication is not decidable, and that it ad-
mits no complete axiomatization as long as the set of axioms is required to
be recursive. This was demonstrated by Gödel in his epoch-making paper
of 1931. Actually, Gödel proved much more. His result is not only about
first order logic, but about arbitrary means of effective listing of, among
other things, arithmetical sentences in the first order language referring to
addition and multiplication. No axiomatization, formal system, computer,
or Turing machine can produce all such true, and only true, sentences.

The advent of undecidability as a consequence of one simple step con-
sisting of piecing together multiplication and addition, should be called
emergence. This is surprising; and it was surprising to all experts when it
was discovered. What is more, it remains surprising. This claim may be con-
troversial, so it requires an explanation. The contrary view would be based
on the argument that the phenomenon of undecidability of arithmetic is
well known now, as are many related results. Mathematicians and logicians
have got used to the fact discovered by Gödel and they know that the struc-
ture of natural numbers, considered with addition and multiplication, is so
involved that one can represent in it all recursive functions, and this can be
proved to be sufficient to represent also some non-recursive sets. It can be
added here, that the natural question, of what happens if exponentiation
is added, and then further functions, admits an impressive answer: nothing
new is happening. Exponentiation can be defined in Peano Arithmetic (and
even in weaker theories), and all primitive recursive functions can be defined
as well, as was shown by Gödel in his paper. If so, does the fact that we
have learned so much eliminate the initial surprise?

My view is that it does not. The reason is that it is hard to explain
why this undecidability occurs. It seemed that the iteration of the successor
operation defines the natural numbers. And it still seems so. What happens
when addition and multiplication are added? More can be expressed. The
natural numbers, so utterly simple, become suddenly very complicated. The
complexity is objective; it has nothing to do with our way of approaching it.
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The numbers emerge as being anything but simple. Whatever we propose as
a definition of them is necessarily inadequate. No definition, no program is
sufficient. This much is known; but it is very difficult to overcome the initial
surprise and to agree that no definition, no finite description can be given.
After all, it seems we do know what the natural numbers are. Why is there
no comprehensive, adequate definition of natural numbers? After all, we do
give definitions that seem to grasp our intuitive concept of natural number;
we formulate Peano axioms, define second order arithmetic, etc. What are
those definitions, if they are not adequate? The answer is that they are defi-
nitions good enough for us, but not comprehensive enough. Apparently, they
function as definitions only in conjunction with some background knowledge
that is not explicit. That is, some implicit resources are inevitable. In the
case of natural numbers defined by means of the successor operation, the
intuitive knowledge is applied, as mentioned before, in the idea of unlimited
iteration of the operation. To understand what this means, the concept of
potential infinity must be available, and, indeed, some understanding of the
natural numbers.

It is impossible to describe the entirety of our concept of natural num-
bers in a way comprehensive enough that it can be communicated to another
human being or to an artificial being, say a robot, without additional as-
sumptions about the tacit background knowledge of the recipient. Where our
tacit knowledge comes from is an interesting issue. Usually biological evo-
lution is offered as the source. Some intuitive common knowledge is needed
to understand mathematical definitions of even the simplest concepts. As
a matter of fact, they can turn out to be not so simple. The necessity of
some background knowledge was obvious for traditional philosophers and
also suits those modern attempts that try to uncover hidden assumptions,
like phenomenology, at least since Husserl’s Lebenswelt, and the later philos-
ophy of Wittgenstein. The awareness that tacit background knowledge must
exist is also present in analytic philosophy that, like the work of Putnam,
overcomes the näive temptation to formalize everything. One can also say
that it should be obvious that in order to formalize anything, something
unformalized must be left as the fundament. Gödel’s theorem seems not
only to confirm that intuition but also to indicate that it is necessarily so.

Interestingly enough, the thesis about the unavoidability of tacit knowl-
edge even in apparently simple mathematics remains in place even if we take
into account the possibility that the human mind is equivalent to a machine.
This possibility is not excluded by Gödel’s results despite claims to the con-
trary made by many authors who have not understood what Gödel himself
noticed: that the existence of such a machine, equivalent to the mind in the
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realm of arithmetical sentences, does not contradict his theorem. If it exists
then there must remain something beyond the transparent, understandable
fragments of the program. This “something” may be located in some com-
mon knowledge that makes it possible to say that the program is correct,
or it may be some innate feature or some property of hardware.

Whatever the nature of the background knowledge is, and however hard
we try to understand it, it seems to me that we are unable to imagine the
resulting complexity of numbers taken with both addition and multiplication
if our point of departure is solely our intuitive understanding and the näive
definition of natural numbers. Thus we can say that we are facing genuine
emergence.

Additionally, emergence in a loose and rather metaphorical sense can
be also seen in two other aspects of the logical foundations of mathematics
indicated by Gödel’s proof. Thanks to his proof one can refer to “Gödelian
emergence.” Let us consider an axiomatic theory in a broad sense – we
require only that it is rich enough to make Gödel’s proof applicable. Given
such a theory, if we assume the consistency of the theory then automatically
the arithmetical sentence expressing the consistency of the theory can be
assumed to be true. The sentence can have a simple form; namely, it can
state that “there is no solution of a Diophantine equation p = 0”, where
p is a polynomial with integer coefficients.” (The polynomial p is defined
specially for the theory in question.) What is more, this is still true even if
the theory is about a completely different area with no direct connection to
arithmetic. As soon as we agree that the theory is consistent we can also
assume that a certain specific and highly unreadable equation has no integer
solutions and, still more, that this statement (stating that the equation has
no solution) is not derivable in the original theory (if the standard coding
procedures are used). Some kind of inexhaustibility of mathematics can
be seen here; in particular, if a theory is intended to include the whole of
mathematics, an appropriate statement about the non-existence of integer
solutions of a certain equation refutes the intention. This inexhaustibility,
that is, the process of going beyond any framework that we can propose that
is supposed to capture mathematics, can be seen as a sort of emergence.

A related interpretation was proposed by Michael Dummett. He brings
Gödel’s results as an argument in favor of the intuitionist concept of number.
Incompleteness, he says, is the result of the internal unclarity of the meaning
of number. We know what numbers are but we cannot escape ambiguity
because the principle of mathematical induction must be true for all well-
defined properties of numbers, and the concept “well-defined property of
number” has no fixed reference but is indefinitely extendible. According to
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Dummett, Gödel has shown that the class of principles used to recognize
the truth of sentences involving quantification over natural numbers cannot
be precisely defined; it must be seen as an indefinitely extendible class.
This conclusion is in accordance with the vision advocated by mathematical
intuitionists: the class of intuitionistically acceptable proofs grows in time
because we understand our mathematical constructions better and better.
This extendibility of the notion of a mathematical proof and of the concept
of a well-defined property can be seen as an indication that the concepts are
creative. There is something new arising, something impossible to anticipate,
and, therefore, we are witnessing here emergence or something akin to it.

The two prime examples of emergence in mathematics considered here,
the fractals and the undecidability of the structure of the natural numbers
taken with both addition and multiplication, have an interesting similarity
to examples from the material world. The properties of fractals and numbers
are considered as objectively existing properties of structures that are com-
pletely independent of us. In these examples, mathematics looks strikingly
similar to science. It is probable that examples of emergence in mathematics
can be relevant for the philosophy of natural sciences.

Stanisław Krajewski
Institute of Philosophy
University of Warsaw
stankrajewski@uw.edu.pl
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STUDIES IN LOGIC, GRAMMAR AND RHETORIC 27 (40) 2012

Witold Marciszewski

CONFRONTATION OF REISM
WITH TYPE-THEORETICAL APPROACH

AND EVERYDAY EXPERIENCE

1. Grzegorczyk’s project for merging reism with type theory

Quine’s famous essay “On What There Is” starts from the following remark.

A curious thing about the ontological problem is its simplicity. It can be put
in three Anglo-Saxon monosyllables” ‘What is there?’ It can be answered,
moreover, in a word – ‘Everything’ – and everyone will accept this answer as
true.

Obviously, such accord is only apparent, since each philosophical doctrine
offers its individual answer on what this everything does comprise. How-
ever, the strategies of justifying their claims have something in common.
Each philosopher tries to distinguish a category of entities whose existence
would be most certain, beyond any doubt, and then – on this basis – to
demonstrate the existence of other kinds of entities. Let the elements of such
a basic category be called prime existents1 The history of philosophy can
by summarized through mentioning kinds of entities which were acknowl-
edged as prime existents by particular thinkers: by Plato – universal ideas;
by Aristotle – substantial individuals; by Democritus – atoms; by Descartes
– his own mind; by Hume – sense data; by Brentano (in one phase of his
development) – mental phenomena, etc.

What in the Aristotelian idiom is called individual substances can be
translated into vernacular English as individual things or, even simpler,
things – Latin res.2

1 In the use of the term “individual substances” I follow Moran’s [2000, p. 35] account
on Brentano’s ontology.
2 Dictionaries contain a long list of everyday meanings of “thing”. Among them are
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Thus Aristotelian ontology might be called reism, but in fact this des-
ignation has come into use owing to Tadeusz Kotarbiński. He termed so
a specially strict form of reism which restricted the realm of existence to
those things which are physical tridimensional bodies in space and time;
hence another term he used to denote his view is somatism. Still another
name is concretism.

There are a number of Andrzej Grzegorczyk’a writings in which he in-
troduces himself as a telling follower of reism. However, his involvement
is different from that of Kotarbiński. The latter held firmly his tenet as
the last decisive word of philosophical wisdom, and focussed his attention
on defending principles of such materialistically oriented reism. With Grze-
gorczyk there is no stress on materialistic orthodoxy; instead, he cares for
the culture of rational thinking, and sees reism as a possibly useful tool
for this purpose. In pursuing this goal, he is like an earnest researcher who
gets deeply engaged in a thought experiment; that of adopting reism for
the dissemination of logical culture. In this enterprise, he looks attracted by
reism, and with empathy embraces it as if his own position. However: with
the proviso that one succeeds in transforming Kotarbiński’s rigid reism into
a more flexible tool of efficient thinking.

In his book devoted to applications of logic in real human life, under
the expressive title “Logic – a Human Affair” [1997], Grzegorczyk endorses
reism but with the said proviso. This runs as follows (p. 12):

The style of writing I have chosen in this book may be called reistic. It is
reism in a liberal sense. The sense will be explained in a moment.

When employing the term liberal, Grzegorczyk displays the awareness that
in an innovative way he is combining Kotarbiński’s manifesto with his own
epistemological and ontological vision, and his logical expertise. Grzegor-
czyk’s own explanation of liberalizing is to the effect that the reistic style
of describing the world can be exhibited in a more technical way, to wit,
with recourse to Russell’s simple theory of types. Its core gets explained by
Grzegorczyk in a way quite similar to the formulation found in Kurt Gödel’s
article “Russell’s mathematical logic” [1944, p. 126] (I quote Gödel to give
– by the way – some taste of the classics of mathematical logic). Gödel’s
text runs as follows.

the following: a separate and self-contained entity, an action, any attribute or quality
considered as having its own existence, a piece of information. It is the first item in this
enumeration that gives rise to the philosophical reistic meaning of “thing”.
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By the theory of simple types I mean the doctrine which says that the objects
of thought [...] are divided into types, namely: individuals, properties of indi-
viduals, relations between individuals, properties of such relations, etc., with
a similar hierarchy for extensions [i.e., classes, called also sets].

Consequently, the theory of types admits of quantifying variables of any
type, not only those of the type of individuals. These classics are disregarded
by Kotarbiński [1957] who puts the following rigid restriction on quantifying
variables other than those ranging over individuals; he writes what follows.

The [acceptable by reism] system [of quantification logic] is devised from
a standpoint which does not admit of binding by quantifiers other variables
than individual ones. This restraint is to prevent the use of the existential quan-
tifier with respect to predicate variables. For this would entail the existence
of some entities other than individuals; namely, sets denoted by predicates,
while – in fact – individuals are the only existents. [p. 158, ad hoc translation
by W. M.]

When taking into account that the very core of type theory consists in allow-
ing quantification within each type – sets (as extensions of predicates), sets
of sets, etc. – Grzegorczyk’s type-theoretical enhancement of reism seems to
be like reforming one party’s dictatorship through converting it into plural-
istic democracy; it would be rather turning the system upside down instead
of a limited correction.

However, the term “reism” can be used in a legitimate way, following
its Latin etymology, without sticking to the orthodoxy established by Ko-
tarbiński. A way out should be found with the catchword “Back to Aris-
totle”, following Grzegorczyk’s [1959, p. 8] suggestion that the Russellian
theory of types may be seen as a modern counterpart of the Aristotelian
idea of categories of being.

Let’s note how these theories are related and complete each other. The
theory of types has the enormous advantage that successive types are be-
ing introduced in a systematic manner, according to a uniform procedure,
and without any upper limit (up to infinity). However, being a mere for-
mal system, a syntactic framework, this theory does not tell what entities
constitute the type of basic elements, called individuals, that is, the lowest
type. As individuals there may be taken numbers, atoms, apples, points,
situations, Platonian ideas, events, sense-data, minds, mental states, etc.
What will be chosen depends on an intended semantic interpretation of the
basic set.

Now let’s go back to Aristotle, and ask about his interpretation of the
lowest type, i.e., lowest category. He establishes a hierarchy of types as well,
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but much restricted in number. For he takes into account only those which
we can perceive in the limited range of our experiencing reality. Thus his
categorial framework is less embracing, as being concerned with one actual
world, not with a multitude of possible worlds (each having basic elements of
its own). In this world there is no uniform systematic procedure of entering
new types on the basis of preceding steps, but each step has to be considered
separately, with ontological intuition.

Why does the Aristotelian system of categories deserve to be called reis-
tic? Let us start from noticing that Aristotle distinguishes the primary kind
of reality from secondary kinds, and this primary (so to speak, complete)
attaches to the lowest category alone, while different secondary kinds (less
and less remote from completeness) get distributed among remaining types.
In such a framework, the reistic component consists in identifying the basic
elements (that is, completely existent) with things. They are called primary
substances and form a universe which includes things in the modern reistic
sense.

The Aristotelian categorization can be connected with a type-theoretic-
al categorial framework owing to the Russellian distinction of complete and
incomplete expressions. The former denote higher types (classes, proper-
ties etc.) while the latter denote individuals. This semantic distinction can
be transferred to the ontological level, and be applied to respective entities
as denoted by said kinds of expressions. Thus things will be called complete
entities, while classes, or properties – incomplete entities. An alternative
stipulation is due to Alexius Meinong who for the kind of reality possessed
by properties employed the term “subsistence” (German Bestand).3

Now the difference between the original strict reism and liberal reism
can be concisely expressed as follows. Liberal reism – in the Aristotelian
vein – acknowledges two modes of reality, complete and incomplete, or (in
another idiom) existence and subsistence, attached to the lowest type (in-
dividual things) and the higher types (classes etc.), respectively. On the
other hand, strict reism denies the very idea of subsistence (or, incomplete-
ness in being) as one of the justified modes of reality, claiming instead that
only individual things, conceived as physical bodies, constitute the whole of
the real world.

Despite all these divergences, there is a feature common to type theory
and strict reism. It is the notion of the individual as being at the bottom
of the ladder of types. Significantly, we are forced to consider individuals as

3 The prefix “sub” (meaning in Latin “under”) in “subsistence” hints at a secondary
sort of actuality. More on this notion – see Bergmann [1964], Findlay [1963], Simons [1992].
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the basis of our logic when we use quantifiers and predicates.4 This feature
is characteristic of the whole of modern logic, including type theory as its
eminent representative; strangely enough, it is alien to the Aristotelian syl-
logistic, which in a rather Platonian manner is oriented toward universals.
Such a preference for individuals in constructing logic appears to be the
rational nucleus in the programme of reism.

2. Tenets of strict reism and its perplexities in the face
of scientifiic theories

The confrontation I have in mind occurs with respect to any scientific the-
ory which involves abstract theoretical concepts, remote from our everyday
perceptions of such tridimensional bodies as trees, stones, buildings. The-
oretical concepts to be taken into account may by light, heat, magnetism,
electricity, gravity, entropy, and so on. In the present Section the main tenets
of strict reism are formulated, and discussed with reference to some scientific
concepts which prove very resistant to the demands of reistic correctness.
This is why one can speak of perplexities.5

Kotarbiński takes advantage of the list of ontological categories pro-
posed by Wilhelm Wundt at the end of the 19th century. It includes: things,
states of affairs, relations and properties. This original list does not include
events and processes; presumably, they are subsumed into the states of af-
fairs; it is clear, however, that it was Kotarbiński’s intention to treat them
as non-things. His strict reism consists in affirming the existence of things
and denying any existence to the remaining items from the list. This can be
summed up with the following statements.
[SR1] Any object, that is, whatever does exist, is a thing.
[SR2] No object is a state of affairs (including events and processes), re-

lation or property.
[SR3] x is a thing if and only if x is a resistant and extended object (a

material body).
On account of SR3, Kotarbiński also termed his view pansomatism; the term
derives from the Greek “pan” (all) and “soma” (body). Thus, pansomatism

4 This maxim is borrowed from Peter Simons [2005, p. 43]
5 In the paragraphs of this Section which are concerned with reistic tenets, I fol-

low Jan Woleński’s [2012] article on Reism in Stanford Encyclopedia of Philosophy:
http://plato.stanford.edu/entries/reism/ (I do not use quotation marks since the cita-
tion is abbreviated, and also in other ways non-literal). When speaking of perplexities,
I follow my own line of reasoning.
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claims that all objects (i.e., whatever exists) are material bodies. He used
interchangeably the terms “reism”, “pansomatism” and “concretism”, the
last indicating that things should be construed as concrete objects, which
is to say, individuals, as opposed to the rest of the categories listed in SR2.

Some comments on each of the points will be in order. As to SR1, the
phrase “any object” should be understood as “whatever exists”, and the
copula “is” as one to express equivalence.

As to SR2, a serious puzzle arises about the question of how we should
discern those properties, states of affairs, etc., which are possible and attach
to some things, from those which are impossible. The impossible ones are
defined as those which are not able to exist. Correspondingly, the possible
properties should be defined as being able to exist, and consequently, those
who actually attach to something should be regarded as belonging to re-
ality in the way termed subsistence, or incomplete existence, as considered
above (§1). Subsistents are no figments, but in the reistic setting there is no
way to tell and justify the difference.

Special attention is due to processes as a category of particular impor-
tance in sciences. What about such processes as waves in some medium, as
water, air etc. where “water”, “air” etc. are mass terms? Do mass terms
really denote things in the sense of strict reism?6

Even worse, what about the non-mechanical type of wave, like electro-
magnetic waves, which do not require any medium? Instead, they consist of
periodic oscillations in electrical and magnetic fields generated by charged
particles, and can travel through a vacuum.7

Should a vacuum be counted along with things? Democritus would pre-
sumably answer in the affirmative, but what about Kotarbiński? Putting
scientific doubts aside, we encounter similar perplexities when experiencing
processes without any individual thing as their substratum in our everyday
experience; such are river, wind, light, heat etc. As not being properties of
anything, should they be regarded as things, or rather as no-things?

Among items omitted in SR2, but also thought with reism as nonexis-
tents, there are sets or classes (the two terms are used in the present context
interchangeably, according to stylistic convenience). Implicitly, they belong
to the forbidden zone, since classes are defined by relevant properties, hence

6 A penetrative discussion of the peculiarities of mass terms is found in Simons’ [2005]
paper “Mass Logic”.
7 Even in the Newtonian theory of light, which is closer to reism because of defining

rays as streams of particles (hence microscopic solids), there appear concepts from the
reistically forbidden language (italicized in the following quotation), to wit: “Sine of inci-
dence is in a given ratio to sine of refraction, for every ray considered apart.” – Newton’s
“Opticks”, Proposition VI, Theorem V.
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having to share with the latter the status of nonexistents. Integer posi-
tive numbers, in turn, when conceived as properties of classes, have even
a stronger reason for non-existence.8

Concerning SR3, the vagueness of the word ”resistant” leads to some
questions formerly raised in the comment on SR2. Are mechanical waves
resistant? True, liquids and gases are resistant, but the waves themselves
as propagated in such media are just transitory configurations of particles,
being more like geometrical forms than tough pieces of matter. Strict reism
leads to even more troubling puzzles when it comes to considering gravity;
these cases will be discussed, as especially interesting, in the next Section.

Reism as a system of ontology gives rise to its semantic counterpart – to
the effect that expressions referring to properties, relations, classes etc. are
not regarded as genuine names; they are called therefore apparent names
or onomatoids. In these terms the semantic thesis of reism is stated as the
following principle.

[SR4] Only sentences with genuine names have a meaning. Those with
apparent names are meaningless, unless they are translatable into
sentences containing genuine names alone. Owing to such transla-
tion apparent names can be wholly eliminated from the language.
If we use them, this is only for practical reasons without any theo-
retical necessity (e.g., for the sake of greater conciseness).

For instance, the sentence “Wisdom is a property of some people” has sense
owing to the fact that it can be translated into the sentence “Some people
are wise” where no apparent names (i.e. “property” and “wisdom”) occur.
If such elimination is not available, then the utterance containing apparent
names is devoid of any sense.

SR4 when taken jointly with SR1 and SR3, would have disastrous con-
sequences for the whole of our science, since mathematics as well as natural
and social sciences ought to be regarded then as meaningless. Even the sim-
plest arithmetical sentences, say (A) “1 > 0”, must be regarded by a reist
as nonsensical, as the apparent names “1” and “0” cannot be eliminated
by replacing A with any sentence about bodies; that is entities existing
in time and space. Also set-theoretical utterances would lose the rank of
meaningful sentences; nobody can manage to get rid of the word “class”,
e.g. in the following string of words: “There is a class of such classes that
no one of them is its own element”.

8 The verdict concerning the non-existence of classes is explicitly stated, e.g., with
Kotarbiński [1957, p. 157f].
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The lack of sense in the language of natural and social sciences would
be equally evident. Consider the following sentence: “The maximal speed of
communicating the content of a message cannot exceed the speed of light”.
According to SR4, the apparent names “speed”, “content”, “light” should
get eliminated in favour of the names of tough resistant bodies – as sole
constituents of a sentence which would express exactly the same thought. Is
it a tractable task? Such an attempt does not seem to have any chance, even
for the most sophisticated followers of reism. But, ultimately, the answer
is up to them.

3. The small case study of gravity – to exemplify the notion
of abstract constituents

Let us compare three assertions concerning gravity: one due to New-
ton [1687], another one to Leibniz (as an opponent of Newtonian theory
on the grounds of natural philosophy), and still another to Kotarbiński – to
be labelled, respectively, as AN, AL and AK (A for “assertion”).

AN: There exists the force of gravity.
— On the premise that multiple application of the law of gravity in all

areas of the universe has not yielded any counterexamples.

AL: There does not exist a force of gravity.
— On the premises that (L1) the acting of such force would have been

an action at a distance, while (L2) there cannot be any action at
a distance.

AK: There does not exist a force of gravity.
— On the premises that (K1) gravity would have been a relation between

bodies, while (K2) there cannot exist any relation between any objects
(compare SR2 above in §2).

AL and AK look like identical assertions, but in the context of their premises
they obtain different meanings. The AL denial of gravity is supported by
a view belonging to the philosophical foundations of physics; with Leibniz
this view included the basic regulative principle that it is factually impos-
sible for any body to exert an action at a distance. On the other hand,
the rejection of gravity by AK derives from the ontological tenet that any
relation is condemned to non-existence, hence gravity too.

Now, the homework to be done by the followers of reism would consist in
getting rid of (what they think as) apparent names (italicized below in LG)
from Newton’s Law of Gravity.
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LG: Every point mass in the universe attracts every other point mass with
a force that is directly proportional to the product of their masses and inversely
proportional to the square of the distance between them.

Let us recall the scientific meaning of terms used in the above statement.

Mass is the quantity of matter in a body regardless of its volume or of any
forces acting on it. The term should not be confused with weight, which is the
measure of the force of gravity acting on a body. Under ordinary conditions
the mass of a body is regarded to be constant, while its weight not, since the
force of gravity varies from place to place.

A point mass means a point particle with a nonzero mass and no other prop-
erties or structure (likewise, in the theory of electromagnetism there appears
the notion of particles with a nonzero charge).

A force is that which can cause an object with mass to change its velocity,
i.e., to accelerate, or which can cause a flexible object to deform.

In order to account for meanings of the terms italicized in the definitions
above, we shall need a special notion; it seems not to have appeared so far
in the literature, but shall prove indispensable in confronting reism with the
reality handled by science.

Let’s note that when speaking of mass, point mass, and force, we mean
some constitutive parts of bodies. Let us call them constituents. They are
parts since they are somehow in bodies, being different from the whole of
the body in question. They are constitutive since they are necessary to
constitute a body. However, they are parts which are not able to exist in
separation from their wholes, while, for instance, a car’s wheels can exist
separated from the car. In this sense, we say that a wheel is a concrete
constituent of car. Consequently, it is in order to say that the mentioned
masses, forces etc. are abstract constituents of bodies. A more familiar ex-
ample, taken from everyday experience, is that of perceiving surfaces. The
surface of the moon is a constituent of the moon, but it cannot exist in
separation from the moon itself; hence it is no concrete constituent, but
an abstract one.

Another handy expression to account for this ontological relation is the
Platonian term participation (Gr. metechein, but taken in a sense which
is reverse (not to say “perverse”)) to that in Plato’s “Parmenides” and
other dialogues (cp. Scheffel [1975]). To wit, with Plato individual concrete
things participate in universals, while in the here – adopted usage (akin to
Aristotle’s) universals participate in individuals. Such a reversal reveals in
what sense the view here expounded can be regarded as liberal reism: reism
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for that anti-Platonic point, and liberal for not denying reality to universals
conceived as abstract constituents.

The notion of abstract constituent fits into the categorial framework
of the theory of types, since abstract constituents form a kind of property
(the main idea of the theory of types has been sketched in §1). Thus the
surface of the moon is a property of the moon as a solid, and the line
being a perimeter of this plane is the plane’s property. Hence an abstract
constituent of a whole which is of type n, belongs itself to type n + 1, like
in the case of properties of bodies (as their abstract constituents). Let this
be exemplified by a rough (with ad hoc numbering) calculation of types of
objects involved in the process of gravitational attraction.

Let’s agree that any body in the universe belongs to the lowest type, labelled
with number 1. Hence its mass, being its abstract constituent, is of type 2.

A point mass being an abstract constituent of mass, is of type 3.

Gravitational attraction acting with a certain force is a relation between point
masses, hence it is of type 4.

Force of attraction is a property of attraction processes, hence it is of type 5.

Every next type number marks a higher level of abstraction in the above
sequence of abstract constituents. With this fact in mind, a kind of arguing
“ad hominem” (i.e., appealing to personal considerations) will be in order.
A person who considers that there is in the universe the force of attraction,
will be ready to acknowledge that there are abstract constituents in reality.
On the other hand, one who claims that no abstract objects can participate
in reality is bound to deny reality to the force of gravity, independently of
how great is the scientific merit of this concept.9

The same is to be said of many other abstract theoretical concepts in
science. Each of us is free in her/his worldview either to believe that there
are abstract constituents, or to believe that they are not the case, being just
mental figments which in a mysterious way prove astonishingly fruitful in
perceiving and mastering physical reality.

9 Such a radical attitude is typically represented by Nelson Goodman [1967, p. 214]
in the following statement. “[I] do not presume to restrict the scientist. The scientist may
use platonic class constructions, complex numbers, divination by inspection of entrails,
or any claptrappery that he thinks may help him get the results he wants. But what he
produces then becomes raw material for the philosopher, whose task is to make sense of
all this: to clarify, simplify, explain, interpret in understandable terms.”
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4. A type-theoretical approach to analysing systems,
esp. domains of discourse

No philosopher should be expected to hold the same views in every period
of his philosophical development; this would contradict the very idea of
intellectual evolution. On the other hand, in such evolution there is usually
an aspect of continuity. and that ought to be also taken into account by
commentators. This I shall try with respect to Grzegorczyk’s [1963, Polish]
paper on applications of the logical method of formally analysing domains
of discourse in the sciences, technology and economy”.

The concept of a domain of discourse is patterned on that described by
Grzegorczyk in his textbook [1974] on mathematical logic; there are found
typical examples of domains or systems or else (still another term) structures
studied in arithmetic and algebra with the use of notions provided by logic
(allied with set theory); hence the use of the phrase “the logical method”.
The paper [1963] is meant to extend this method over other, possibly all,
domains of discourse – with the purpose of making their concepts more
precise.10

Before looking at how the Author deals with some examples of domains
(structures, systems), it will be in order to consider a methodological re-
flexion closing his paper. This is worth special attention, since there shines
through it a conflict between the reistic and the pragmatic approach in do-
ing science. Let the core of the latter be summed up by the Chinese proverb
Black cat or white cat: if it can catch mice, it’s a good cat. Suppose that
reism is a white (this means somehow a nicer) cat, and there is a theory
disapproved by reism which nicely proves its mettle (catches mice); such
a pragmatic reason justifies employing that theory as a good black cat.

The said reflexion is occasioned by using the term “internal states”
by Grzegorczyk in describing such structures as machines and organisms,
though speaking about states of affairs is by reism forbidden as meaningless.
Now, in the light of this Chinese wisdom, let us read the following passage
of his article [1963, p. 73] which might be entitled: a pragmatic justification
of the acknowledgement of abstract constituents.

Somebody may try to challenge the introducing of internal states, saying that
the mode of existence of such objects is suspect from a philosophical point of

10 A trait of continuity can be seen not only in the mentioned connection between
publications of 1963 and 1974, but also in the fact that the same didactic intention guides
the study of 1963 and a later book [2007] – both dealing with applications of logic in
human affairs.
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view (for instance, may be, from the reistic point). However [...] with respect
to the description of a particular phenomenon it is often very convenient to
introduce parameters whose mode of existence encounters numerous difficulties
from an ontological point of view. A classical example is provided with the
concept of the geometrical point, which is philosophically hardly conceivable
in reistic language, but it functions as the basis of calculus, and the whole
of technological applications of mathematics rests on this concept. [Ad hoc
translation by W. M.]

In spite of being aware of the conflict between a pragmatic approach and
reistic orthodoxy, the Author does not give up his methodological pragma-
tism. The core of his pragmatism consists in treating properties as if they
were individuals, if only this proves efficient in analysing a system. Let me
explain this with the help of the notion of abstract constituents (as discussed
above in §3).

And thus, e.g., the visible surface of the moon is its property whose re-
ality consists in being an abstract constituent. It is the moon’s constituent
since it belongs to the moon as a solid, and it is abstract as there cannot
be surfaces outside solids. The moon’s surface, as its property, in turn, has
the properties of having such and such shape, of being colored etc. Let’s
consider its color, say, gold. The property of being gold, as not being able
to occur outside a surface, is – in this example – an abstract constituent
of the lunar surface. Goldness, in its turn, may be more or less vivid, more
or less deep, and so on. Such properties form a certain set of abstract con-
stituents of colors; we call them abstract (let me recall this once more)
since, for instance, vividness of color cannot occur independently outside
a color.

Such a lunar story in a simple way exemplifies the type-theoretical hier-
archy of properties (see Gödel’s definition in §1). One recognizes properties
of an individual self-contained thing (the moon’s solid), then properties of
these properties, which again possess properties of their own. According
to the strict original reism, such higher-type objects are mere mental fig-
ments which cannot form any non-empty set. Grzegorczyk’s [1963] practice
of system analysis demonstrates the pragmatic unavoidability of higher-
type entities. He considers non-empty sets of elements of different types,
without any fear of climbing higher and higher up this ladder, and owing
to such a procedure he obtains a cognitively fruitful, hence pragmatically
recommendable, picture of a domain of reality.

Such a domain is specified by the following components: (1) the set, or
more sets, of individuals as basic elements, sometimes with some individuals
distinguished by their names, (2) the list of properties and relations to be
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predicated of individuals, (3) specified apart, there are many-one relations,
that is, functions; those in mathematics are necessary for computing, while
in empirical systems – for establishing constant dependencies, for instance,
causal connections, as a basis for making predictions. The most schematic
presentation of such a system is as follows (the label SS abbreviating “the
Schema of a System”).

SS: 〈X1, . . . ,Xk; R1, . . . , Rm; F1, . . . , Fn〉.
Among the examples analysed, there is a piece of painting. In the first
segment in SS, Grzegorczyk puts the following sets of basic elements, that is,
individuals: (X1) the set of colored spots which constitute the given picture,
(X2) the set of all possible shapes which can attach to colors, (X3) the set
of all possible colors.

What is curious in this description is its overtly anti-reistic feature.
Its basic elements, or individuals, are no things – in the sense of tridimen-
sional bodies. The analysis starts from abstract constituents of the piece
of painting: spots, colors, geometric shapes. Such a proceeding can be jus-
tified only by stipulating that instead of an absolute concept of the indi-
vidual, one deals with a relative one, that is to say, relative to the system
under study. In a full order of types, one that starts from self-contained
individuals is basic; the colors and shapes would be objects of a higher
order. However, if they are what the analysis starts from, then basic ele-
ments are allowed to be treated as relative to the system in question. Such
a proceeding can be compared to a quick going up the stairs, when one
jumps two steps at once, with one leap; then the second step is for him
like the first. In the further description of the given painting there appear
relations between the mentioned abstract constituents (playing the role of
individuals), for instance the ordering relations of being a clearer color and
being a more saturated color; also the function to attribute a shape to
a spot, and so on.

Another case discussed by the Author is language as a system whose
basic set (that of all individuals taken into account) consists of symbols;
as being written tokens. Symbols are things in the strict reistic sense, hence
no tactics of reisation is here necessary. However, in describing a language
one needs another liberalizing move, to wit, a hierarchy of sets (classes):
the set of all admissible (in the language of question) concatenations of
symbols divides into certain categories (parts of speech), each category be-
ing a class which divides into subclasses, etc., and thus we obtain a set
of categories, hence a higher type set containing other sets as its ele-
ments.
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Special interest is due to the structure called by the author machine
or automaton. It nicely fits into the idea of Turing’s machine (whose enor-
mous impact upon current scientific thinking is beyond any question). This
structure includes two sets of basic elements: (i) internal states of the ma-
chine and (ii) the tokens, hence material objects, which it produces. While
the latter are things in the reistic sense, the former belong to the category
of states (possessed by things) which strict reism excludes from the scope
of reality. Thus one treats internal states of a machine as basic elements
on a par with physical tokens produced by the machine; the same applies
to “living machines”, namely organisms.

A still further departure from strict reism is found in Grzegorczyk’s
description of the process of production as performed by machines. He ac-
knowledges the process itself as an object to be described, and defines its
basic set as the collection of all possible conditions needed to produce an out-
put. In this way, such abstract entities as are conditions of a process get pro-
moted to the rank of basic elements; that is, individuals, in the structure
being described.

There are even more abstract entities in Grzegorczyk’s repertory of
examples, to wit: (1) games, (2) the whole of some country’s economy,
(3) the mental life of a human. As basic sets of individual elements we
have, respectively, (1’) a class of game situations, (2’) a class of human
economic activities, (3’) classes of human reactions (to stimuli from a cer-
tain class), and classes of human dispositions (to act accordingly to certain
conditions).

When dealing with such analysis of systems that reveals their highly ab-
stract constituents, one may understand the pangs of reistic conscience as
testified by the Author in the passage (see above) which I titled “a pragmatic
justification of the acknowledgement of abstract constituents”. In fact, there
occurs a confrontation of reistic tenets with an actual practice of research in
which the type theoretical approach proves necessary. This approach com-
mits us to treat abstract constituents as legitimate elements of empirical
reality.

There is another source of such commitment, namely resorting to what
Grzegorczyk calls everyday experience. In his intention it should have sup-
ported tenets of reism. However, some second thoughts lead to the real-
ization that abstract constituents of bodies are present to us even in our
everyday experiences.
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5. How does the acknowledgement of abstract constituents comply
with everyday experience?

Andrzej Grzegorczyk belongs to those philosophers who in high esteem hold
what they call everyday experience.11 His view can be truly rendered by the
maxim which is due to Thomas Reid: I acknowledge that a man cannot
perceive an object that does not exist.12

This maxim provides us with a relevant context to explain the sense of
the expressions “object” and “there is” which in the foregoing narrative were
used without such a reflexion. For the sake of academic communication it is
recommendable to follow the usage practised by the classics, and these are
– in our issue – Russell and Meinong. Both use the term “object” (German
“Gegenstand”) for absolutely everything. Some objects exist, some subsist,
and some neither exist nor subsist (as for the concept of subsistence, see § 1
in the text referring to note 3, and in §2 a comment on SR2).

In using the phrase “there is”, a reasonable strategy seems to be the
following: let the quantifier expression “there is/are” involve – in its domain
of quantification – any object which either exists or subsists. Thus, when
suitably paraphrasing Reid’s principle, we could obtain a handy idiom to
render his idea more exactly: A man cannot perceive an object that does
not exist or does not subsist.

In a more explicit way, the thus modified Reid’s Maxim (RM for short)
will be rendered by the conditional RM or, equivalently, RM*.

RM: If an object neither exists nor subsists, then it cannot be perceived.

The same in the form of sentential schema: (¬e ∧ ¬s) ⇒ ¬p).
RM*: If an object can be perceived, then it either exists or subsists.

This is not a suggestion which might be welcome for strict reism, since any
idea of something like subsistence is, obviously, alien to it. But what about
liberalized reism? Could it acknowledge this idea as its own? To address this
issue, let us refer to Grzegorczyk’s [1997] statement which I label with the
letters ECR to mean Epistemological Criterion of Reality.

ECR: [1] We grasp reality directly only in our human every-day experience.
Hence the first task of a philosophical system is to produce a philosophical

11 This orientation is shared by quite a number of authors who highly appreciate
what they call common sense, or appeal, as did prominently Gilbert Ryle [1949], to the
arbitration of a natural language.
12 Quoted after Simons [1992], p. 159.
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language suitable for a consistent and coherent description of this macro-every-
day-reality. This reality is the first thing, which may be meant as something
that is given and that we should report on. [p. 8]

[2] The reality of every-day experience comprises: things with different prop-
erties, connected by different relations, making up different sets. [p. 12, num-
bering and italics by WM]

In the original text, part 2 is underlined with bold type to hint at the
importance of this point. In context, however, one does not find any com-
ment to explain which of many meanings of “thing” in ordinary English is
the one the Author has in mind. Fortunately, we find an explanation with
Grzegorczyk [1959]. This runs as follows:13

An object is said to be a thing if it is tangible, spatial, weighing and lasting,
as are tables, stones, trees, houses, people, animals. [p. 10]

The key role in ECR/2 seems to be played by the monosyllable “with”.
Should it mean that the properties of things, as well as relations between
things, hence their abstract constituents, belong to the reality grasped (ac-
cording to ECR/1) by everyday experience? By using “with” instead of
“and” the Author might have meant that properties etc. are not perceived
in the same way as are things, but nevertheless they together do belong to
the field of perception. And this way of their belonging gets, in the present
discussion, rendered by “subsistence”.

Before considering how far this may comply with Grzegorczyk’s inten-
tion, let’s consult our own bodily senses and our inborn common sense, with
the help of the following story.

Nice instances of abstract constituents can be found in the heavens. There we
observe objects from a constant angle, without any opportunity to change it
and to see the object from another side, and so to obtain additional information
as a premise of inference. To wit, in the reasoning which occurs with changing
the angle, we infer that the front of a building, observed a moment before from
another angle, is only one of the surfaces of the solid in question, and thereby
our experience, having been merged with an inference, involves some foreign
elements. However, due to our choosing some heavenly objects for observation,
we can obtain pure, most indubitable, sense data; now even a radical empiricist
cannot impair the sensory trustworthiness of our experience.

13 Not having found anything like this statement in the book of 1997, I make use of
a much earlier text, but then the question arises: whether the later Grzegorczyk would
have agreed with himself earlier? For the moment, the question must remain open, hence
the interpretation which follows should be regarded as hypothetical.
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Nobody will doubt that when observing the moon, the sun, or other heavenly
entities, we perceive them not as solids but as twodimensional planes. If one
wishes to stick to the reistic orthodoxy, one is committed to assert that
planes do not exist. A plane has, for instance no weight, which according to
Grzegorczyk (following Kotarbiński on this issue) is necessary for existing as
a thing. But how to account then for the fact that the moon’s twodimensinal
surface is given in our every day (and even everynight) experience? No other
way out seems to be available than the admitting that planes are not things
to exist inedependently but are abstract constituents which are present in
things. Theirs is not complete existence but some sub-ordinate way of being,
which appropriately can be (following Meinoing’s usage) termed as sub-
sistence. A case like that of the moon makes us aware that to be subsistent,
likewise to be existent, is sufficient to be given in experience, including the
everyday mode of experiencing. And this is the moral Reid’s maxim RN* is
to tell us.

Could Grzegorczyk give a nod when listening to this story? In his texts,
I did not encounter any explicit utterances in this matter, but his inten-
tion of liberalizing reism would find the second realization, besides that of
adopting the theory of types. Moreover, these two steps would complete
each other. If one rejected RM*, then only the objects of a lower type could
be experienced, since those from higher levels would be pure figments. Then
how should we distinguish, for instance, such geometric objects as planes,
lines or points from such as rectangular circles?

Grzegorczyk notes in his paper of 1963 (quoted above in §4) that the
concept of the geometric point functions as the basis of calculus, and the
whole of technological applications of mathematics rests on this concept.
It is a good pragmatic reason to see points as some constituents of re-
ality, in contradistinction to rectangular circles. How to account for this
pragmatically justified differentiation? The suggestion which results from
this paper’s discussion is to the effect that rectangular circles do not exist,
solids belong to existents, while points represent the category of subsistents
as being abstract constituents of something that exists.

This might be the standpoint of liberal reism. It would remain reism
because of the firmly held priority of individual things as forming the ba-
sic type. And would become liberalized owing to admitting abstract con-
stituents into the sphere of reality in the role of subsistent abstract objects;
this should be justified by their pragmatic fruitfulness as well as their ability
to be perceived in everyday experience.

And this may be a fitting answer to Quine’s question: What is there?.
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PHILOSOPHICAL IMPORTANCE OF
ANDRZEJ GRZEGORCZYK’S WORK
ON INTUITIONISTIC LOGIC

Abstract. We compare Grzegorczyk’s semantics for Heyting’s intuitionistic
predicate calculus with the Intuitionistic Kripke Models. The main problem
with model-theoretic semantics for intuitionistic logic is that the concept of
truth which implicitly is contained in this logic is different than the classi-
cal absolute concept of truth. Intuitionistic ‘truth’ is temporal. We compare
Kripke’s and Grzegorczyk’s account of intuitionistic ‘truth’. The main advan-
tage of Grzegorczyk’s semantics is simply the absence of the truth relation
which occurs awkwardly in Kripke’s semantics. Grzegorczyk replaces the truth
relation with the fundamental pragmatic relation of forced assertion between
an information state and a statement. Grzegorczyk investigated the relation of
assertion in several subsequent papers and defined at least five types of this
relation. He also discerned the classical and constructivist assertions. We ar-
gue that Grzegorczyk’s semantics for Heyting’s intuitionistic predicate calculus
might be regarded as a predecessor of different present semantics which have
arisen in the contemporary informational turn in logic.

1. Introduction

The most important of A. Grzegorczyk’s papers on intuitionistic logic come
from the years 1964–1971. In [Grzegorczyk, 1964], A. Grzegorczyk pub-
lished his profound paper establishing the completeness of Heyting’s propo-
sitional and predicate calculus with respect to the interpretation of this
calculus based on the concept of forced assertion. Although A. Grzegor-
czyk’s [Grzegorczyk, 1964] paper adds one more interpretation of intu-
itionistic calculus to the interpretations existing before, like that of Gödel
[Gödel, 1933], Kolmogorov [Kolmogorov, 1932], Jaśkowski [Jaśkowski, 1936],
Tarski [Tarski, 1938], Kleene [Kleene and Vesley, 1965], Beth [Beth, 1959],
and Kripke [Kripke, 1963; 1965], his interpretation has interesting philo-
sophical consequences, and expresses his deep understanding of intuitionism.
In his [Grzegorczyk, 1967] paper, A. Grzegorczyk divides all formal interpre-
tations of intuitionistic calculus into two groups: recursive interpretations
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and topological ones, and places his own interpretation amid the interpre-
tations belonging to the topological group, along with the interpretations
of Jaśkowski [Jaśkowski, 1936], Tarski [Tarski, 1938], Beth [Beth, 1959] and
Kripke [Kripke, 1963; 1965]. The importance of A. Grzegorczyk’s work on
intuitionistic logic consists not only in establishing the mathematical result,
but foremost is a deep philosophical understanding of intuitionistic logic
as a logic of investigation. This has been done in his [Grzegorczyk, 1964]
paper, together with subsequent works: his [Grzegorczyk, 1967] and [Grze-
gorczyk, 1968] papers, as well as in his [Grzegorczyk, 1971] paper. In his
[Grzegorczyk, 1968] paper, A. Grzegorczyk has written:

S. A. Kripke on the Oxford 1963 Colloquium spoke about interpretation of
intuitionistic logic in [3]. I did not attend this meeting; but I also published
similar ideas in 1964 in [2] developing a bit more the philosophical interpreta-
tion [Grzegorczyk, 1968, 86].

In this passage, A. Grzegorczyk mentions Kripke’s famous paper on
intuitionistic logic and his own 1964 paper. Although both semantics for
intuitionistic predicate logic belong to the topological type, there are certain
important differences between them, which are not always noted in relevant
literature and appreciated. It is true that both semantics prove completeness
theorems for Heyting’s intuitionistic predicate calculus, but they are based
on different concepts and different formalisms.

2. Grzegorczyk’s Semantics vs. Intuitionistic Kripke Models

Kripke defines an intuitionistic model structure as an ordered triple:

〈G,K,R〉
which may be also understood as a tree model structure, where K is a set,
G is an element of K, and R is a reflexive and transitive relation on K. An
intuitionistic model on this structure is defined as the binary function:

φ(P,H)

where P ranges over arbitrary proposition letters, and H ranges over ele-
ments of K. The range of this function is the set of truth-values {T, F}, and
it satisfies the following hereditary condition:

If φ(A,H) = T and HRH ′, then φ(A,H ′) = T.
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This condition tells us that if we already have a proof of an arbitrary
formula A at the time point H, then we still have the proof of A in any
later time point H ′. Further conditions which satisfy the modeling function
are defined by induction on the number of connectives in A. We shall only
turn attention to the most important conditions which are radically different
from the respective conditions in the model-theoretic semantics of classical
logic.

(Atom) If A has no connectives, then it is a proposition letter P , and
φ(P,H) = T or F .

(Neg) φ(¬A,H) = T iff for all H ′ ∈ K such that HRH ′, φ(A,H ′) = F ;
otherwise φ(¬A,H) = F .

(Imp) φ(A ⊃ B,H) = T iff for all H ′ ∈ K such that HRH ′, φ(A,H ′) =
F or φ(B,H ′) = T ; otherwise φ(A ⊃ B,H) = F.

Kripke explains these conditions in the following way.

To assert A intuitionistically in the situation H , we need to know at H not
only that A has not been verified at H , but that it cannot possibly be verified
at any later time, no matter how much information is gained; to assert A ⊃ B
in a situation H , we need to know that in any later situation H ′ where we get
a proof of A, we also get a proof of B [Kripke, 1965, 99].

This small piece of Kripke’s semantical model theory for Heyting’s
propositional calculus is evidence that the concepts of intuitionistic ‘truth’
and ‘falsity’ are different from the respective classical concepts. Truth is not
an absolute concept, but a temporal one: A proposition becomes true only
when it is proved. By relativization of truth-conditions to points in time,
Kripke’s semantics reflect this understanding of ‘truth’ to some degree, al-
though the very concept of being intuitionistically true at a certain point
of time remains philosophically unclear in Kripke’s semantics. An analo-
gous observation concerns also the concept of being intuitionistically false
at a certain point of time. In Kripke’s semantics, both concepts are formally
represented by the function which maps pairs (proposition; time point) into
the set of truth-values {T, F}. The falsity of A cannot be explained by the
truth of the negation of A as is the case in the model-theoretic semantics of
classical logic, where the equivalence holds: A is false if and only if ∼A is
true. In the intuitionistic Kripke models, we can obtain:

φ(A,H) 6= T and φ(¬A,H) 6= T.

This is the case if at point H we do not have enough information to
prove proposition A, but we also do not know at H that it is impossible
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to prove A and assert ¬A. Such impossibility means proving that propo-
sition A leads to a contradiction. Note that intuitionistic logic belongs to
the family of constructive logics, therefore it adopts a constructive concep-
tion of proof. At first sight, one may think that if the intuitionistic truth
of A is reducible to the provability of A, then the intuitionistic falsity of
A is simply the lack of such a proof of A at a certain time point. This
would be something less than having the proof that A leads to a contra-
diction. There are those who argue for the intuitionistic non-constructive
falsity as the lack of proof of A at a time point.1 This conception of falsity
says nothing about accomplishing any construction, and has nothing to do
with the intuitionistic refutation. This non-constructive conception of intu-
itionistic falsity expresses only the possibility of refutation, and in spite of
arguments proffered in its favor, it does not respect the original intuition-
istic idea of falsity of A as provability of the contradictoriness of A. Kripke
[Kripke, 1965, 98], mentions situations where we lack enough information
to prove a proposition A, but he explains that in these situations A has not
been verified, not that A has been proved false.

Grzegorczyk’s semantics of intuitionistic logic is philosophically much
more illuminating than Kripke’s semantics. A. Grzegorczyk [Grzegor-
czyk, 1964] models intutionistic logic as a certain logic of scientific research:

Scientific research (e.g. an experimental investigation) consists of the successive
enrichment of the set of data by new established facts obtained by means of our
method of inquiry. When making inquiries we question Nature and offer her
a set of possible answers. Nature chooses one of them [Grzegorczyk, 1964, 596].

Accordingly, the scientific research is modelled formally as a triple:

R = 〈J, o, Pr〉.
J stands for the set of all possible experimental data (the information

set, finite or infinite); o stands for the initial information (possibly empty),
and Pr stands for the function of all possible prolongations or extensions
of the information. The experimental data a is understood as ordered finite
collections of atomic sentences having the forms of atomic formulas (without
variables) of the classical language of predicate calculus:

a = (A1, . . . An);Ai := atomic sentence.

1 See [Shramko, 2012].
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Sentences containing logical constants do not represent experimental
data. The relation of extension of the information in research R : b is an
extension of a in research R is defined inductively for a finite number of
new atomic sentences. This concept is used in the main definition of Grze-
gorczyk’s semantics; the definition of the concept of forced assertion: the
information state a in research R forces us to assert the statement expressed
by the formula χ2. The relation of forced assertion will be denoted here as >.

Definition 1 [Grzegorczyk, 1964, 597]

(Atom) a > χ iff χ ∈ a, if χ is an atomic formula without variables.

(Neg) a > ¬χ iff ∀b[(bis an extension of a in R) →∼ (b > χ)].

(Imp) a > χ ⊃ ψ iff ∀b[(b is an extension of a inR) → (b > χ →
b > ψ)].3

I omit in Definition 1 the conditions for disjunction and conjunction, as
well as for existential and universal quantification. Definition 1 (with other
resources) enables us to formulate and to prove the completeness theorem
for Heyting’s propositional calculus.

Theorem 2 [Grzegorczyk, 1964]

A formula χ (without quantifiers) is logically true in formal intuitionistic
logic if and only if each information state a of every research R forces us to
assert the statement expressed by the formula χ.

It is easy to notice that the Law of the Excluded Middle does not sat-
isfy the condition of Theorem 2. It may be the case that in a certain initial
information state a we do not have Q(z). Therefore, the state a does not
force us to assert Q(z) ∨ ¬Q(z). On Grzegorczyk’s interpretation of intu-
itionistic logic, the Law of the Excluded Middle belongs to our ontological
assumptions about the world, and as such it lies beyond scientific methods.

A. Grzegorczyk’s completeness theorem for the intuitionistic logic of
quantifiers (Theorem 2 in [Grzegorczyk, 1964]) requires a certain modifica-
tion of Definition 1 proffered above. The modification concerns the clause
for atomic formulas, as well as for compound ones. For example, the clause
for atomic formulas takes the following form:

2 This concept has its origin in P. Cohen’s concept of forcing.
3 The metalanguage in Grzegorczyk’s semantics is classical.
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(Atom) a > Ai iff irrespectively of how we continue our research R from
the state a, we obtain information b such that b contains the
statement Ai.

The clause formulated in (Atom) may be understood as potential forcing
by the information state a of research R. The modification consists in adding
the initial phrase: irrespective of how we continue our research R from the
state a, we obtain information b, such that . . . . To formalize this phrase,
A. Grzegorczyk introduces the notion of branch of the research R.

R is a branch of R = 〈J, o, P 〉 ≡Df X ⊂ J ∧ o ∈ X ∧ ∀a(a ∈ X →
there exists one and only one b such that b ∈ P (a) and b ∈ X).

The idea of potential forcing, and the definition of forcing appropriate
for statements expressed in the language of predicate calculus, may be now
formalized in the following way:

X[(X is a branch ofR ∧ a ∈ X) → ∃b(b ∈ X ∧ . . .)].

Theorem 3 [Grzegorczyk, 1964]

A formula χ is provable in the formal intuitionistic logic of quantifiers
if and only if the statement expressed by the formula χ is forced by each
information state of every research.

The main advantage of Grzegorczyk’s semantics is the absence of the
truth relation and the falsity relation which are present in Kripke’s model-
theoretic semantics for Heyting’s intuitionistic predicate calculus. Grzegor-
czyk’s account suits well the anti-realism of philosophical intuitionism. This
philosophical standpoint was noted by M. Dummett:

Thinking of a statement as true or false independently of our knowledge in-
volves a supposition of some external mathematical reality, whereas thinking
of it as being rendered true, if at all, only by a mathematical construction
does not. [Dummett, 1977, 12]

Kripke is aware of this philosophical attitude characteristic of intu-
itionism, and provides informal comments, as well as formal translations
of his model-theoretic account into the intuitionistic discourse. Neverthe-
less, his fundamental semantic definition formulates truth-conditions with
the help of the function φ which maps the pairs, each of which consists
of a formula and a time point, into the truth-values T and F . But as we
have already mentioned, intuitionism accepts the idea of temporal truth,
according to which a proposition becomes true only when it is proved.
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This idea contradicts the central idea of realism which underlies classical
model-theoretic semantics and classical logic, where the Law of the Ex-
cluded Middle is accepted as a tautology. From this classical point of view,
the idea of temporal truth is contentious and counterintuitive. Accordingly,
there seems to be a little embarrassment in making use of such a concep-
tion of truth in any model-theory. Kripke in his [Kripke, 1963; 1965] paper
does not appeal to this idea of truth, but encounters many obstacles in ex-
pressing intuitionistic semantics in a model-theoretic framework with the
classical concepts of truth and falsity. In consequence, he makes much ef-
fort to make sense of his meta-theoretical evaluations in terms of classical
truth and falsity applied to intuitionistic language with its intended inter-
pretation.4

The solution chosen by A. Grzegorczyk for building a semantics of the
intuitionistic language is better, since it avoids the clash of the intuitionis-
tic with classical model-theoretic ideas. From a philosophical point of view,
most important in Grzegorczyk’s semantics is the fundamental pragmatic
relation of forced assertion between an information state and a statement.
This relation is defined by A. Grzegorczyk implicitly along with the defi-
nition of the connectives and quantifiers of the intuitionistic predicate lan-
guage. Although formally, this relation is modelled as binary, in fact it is
a ternary pragmatic relation: the information state a forces the subject s to
assert the statement expressed by the formula χ. It is an implicit assump-
tion of Grzegorczyk’s semantics that the relation remains unchanged when
applied to different subjects, and for this reason the relativization to the
subject s may be omitted.

3. The Concept of Assertion in Grzegorczyk’s Semantics

Many other philosophical advantages of Grzegorczyk’s semantics are dis-
cussed by A. Grzegorczyk in his later papers [Grzegorczyk, 1967; 1968; 1971].
A. Grzegorczyk [Grzegorczyk, 1968] proffers a slightly different account of
his [Grzegorczyk, 1964] result. The differences are of a philosophical nature.
The main relation of forcing assertion by an information state is now called
the relation of strong assertion of a sentence at a time point in a given
inquiry:

4 Cf. for example Kripke’s comments in [Kripke, 1965, 95].
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AsE(χ, t).

χ ∈ Atom→ [AsE(χ, t) ≡ χ ∈ AE(t)].

AsE(¬χ, t) ≡ ∀s ∈ T [ts→∼ AsE(χ, s)].

AsE(χ ⊃ ψ, t) ≡ ∀s ∈ T [ts→ (∼ AsE(χ, s) ∨AsE(ψ, s))].

AE(t) stands for the set of atomic empirical sentences we assert in
performing experiments prescribed to the time point t ∈ T by the program
of the inquiry E. A. Grzegorczyk claims that intuitionistic calculus forms
the logic of the strong assertion. The strong assertion is compared with the
admissibility relation: χ is admitted as supposition in the time point t in E,
which may be regarded as a weak assertion:

AdE(χ, t).

The inquiry E is understood as a triple:

〈A,R,L〉.
A is the set of time points in which can be admitted χ; R is the set of

time points in which can be admitted ¬χ, for χ atomic; L is the conjunction
of all theories accepted as background for E. The inquiry E defined as
above requires discerning the admissibility conditions of atomic and negated
atomic sentences, and next the proper admissibility conditions of compound
and negated compound sentences. The conditions for atomic and negated
atomic sentences are simple and take the following form, respectively (the
index E has been omitted):

Ad(χ, t) ≡ t ∈ A(χ);

Ad(¬χ, t) ≡ t ∈ R(χ).

The conditions for compound sentences are more complicated, and we
only note that the following equivalence holds for the admissibility relation:

Ad(¬¬χ, t) ≡ Ad(χ, t).

The admissibility relation is a weak counterpart of the strong asser-
tion which is characteristic of intuitionistic logic.5 A. Grzegorczyk [Grze-
gorczyk, 1967] considers also another concept of assertion understood intu-
itively as to be allowed, meant as the relation:

AlR(χ, a).

5 The admissibility relation is a formalization of the same kind of relation which occurs
in Popper’s logic of scientific discovery.
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The intuitionistic negation is defined in terms of this assertion as:

Al(¬χ, a) ≡∼ Al(χ, a).

This is the main concept of Grzegorczyk’s semantics for modal logics
based on strict implication. He defines the set of theorems of the logic of
strict implication as identical with the set of those formulas which are al-
lowable by each information state of every research R. In this sense the
following paradoxes of the material implication are not allowable:

p→ (q → p);

p→ (∼ p→ q).

It turns out also that the famous Grzegorczyk formula, G, is allowable in
the above sense. Formula G does not belong either to the system S4, or S5.6

The pragmatic act of assertion is characteristic of human cognition,
while the intuitionistic and constructive logics may be regarded as log-
ics of cognition. Accordingly, not truth, but assertion is the crucial con-
cept underlying the intutionistic and constructive logics which one may ob-
serve in Grzegorczyk’s semantic reconstruction of these logics. Intuitionistic
and constructive logic remain in a close relationship with the contempo-
rary epistemic logics, which are logics of knowledge, belief, and informa-
tion. The main difference between the latter and their predecessors consists
in this, that constructivism and intuitionism provide us with the logic of
the process of investigation, while epistemic logics formulate the princi-
ples of an agent’s knowledge or agent’s beliefs. J. van Benthem [van Ben-
them, 1993] depicts the difference with the help of the distinction between
implicit and explicit knowledge. In the topological semantics of intuition-
istic logic, we have to do with the information loading of some logical
constants such as negation and implication, as we have seen above. This
property of the logical constants is called implicit knowledge. On the other
hand, in epistemic logic, which retains the classical account of logical con-
stants, but adds the explicit modal operator, K, we have to do with ex-
plicit knowledge. We could say that the implicit knowledge of intuitionis-
tic logic is properly expressed by the assertibility conditions; the explicit
knowledge of epistemic logic, by truth conditions describing sufficient and
necessary conditions of any formula, Kχ, true in a model M and world s.
J. van Benthem [van Benthem, 2009] considers embedding intuitionistic logic

6 More about Grzegorczyk’s modal logic may be found in [Maksimova, 2007].
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in explicit modal-temporal theories of information processes, which enables
us to define such concepts as “always in the future” and “necessarily now”.
He argues that epistemic logic being a result of the embedding gives an
account of the rational agents in actions of observation, inference, and com-
munication. J. van Benthem is right as to his conclusion; nevertheless the
embedding of intuitionistic logic in modal logic, or in modal epistemic logic,
is connected with the loss of specific semantic features of intuitionism which
have been clearly proved by A. Grzegorczyk.

A deep analysis of the relation of assertion is to be found in one Grze-
gorczyk [Grzegorczyk, 1971] paper. A. Grzegorczyk includes in the methods
of assertion the checking, deducing, and construction of an asserted sentence
with semantic terms. By checking he understands applying an algorithm.
The method of deducing assumes a recursive set of axioms and inference
rules. A. Grzegorczyk argues that the three methods are connected with
the three types of assertion:
• Classical assertion;
• Relativistic assertion;
• Constructivistic assertion.

The classical assertion is absolute, that is, non-relativistic. It does not
come into degrees, and is independent of the time of assertion and the
method of assertion. By this conception, the asserted sentence is identified
with the true sentence being effectively justified. This conception is closest to
classical logic, although, it does not imply that it is asserted either χ or non-
χ, no matter whether our meta-theory is classical or not. This conception
of asserting may be combined with the method of algorithmic checking if
atomic sentences are formulated in the language of arithmetic. For example,
if we have an atomic sentence of the form:

n+m = k,

where n,m, k are names of natural numbers, then the atomic sentence is
asserted if it is justified by an algorithm. Next, the method of classical
assertion tells us what it is to assert a compound sentence.

Relativistic assertion depends on many conditions: one of them may
be time. On this conception, the absolute notion of assertion applied to
theorems must be defined separately:

χ is asserted as a theorem ≡Df χ is asserted in all conditions.

For many collections of conditions, the set of absolutely asserted sentences
is identical with intuitionistic logic.
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Constructivistic assertion is a special kind of relativistic assertion rel-
ativized to method. The method is understood as an algorithm giving an
expected result in a finite number of steps. In this conception, the assertion
of a theorem is defined in the following way:

χ is asserted as a theorem ≡Df
there is the algorithm α such that α is a justification for asserting χ.

It is instructive to compare the assertibility conditions formulated for
the denial of χ in the three conceptions:
• ∼χ is asserted ≡ it is not asserted χ.
• ¬χ is asserted in the conditions c ≡ there is the open interval I for c,

such that for any member i ∈ I, χ is not asserted in i.
• ¬χ is asserted as justified by the algorithm α ≡ for any β, if χ is

asserted as justified by the algorithm β, then the algorithm α(β) leads
to a contradiction.

It is easy to notice that only the third condition is free from a tension be-
tween truth and justification. The constructivistic assertibility conditions
are in fact justification conditions formulated in terms of an algorithm and
the classical concept of contradiction. Neither the classical conception of
assertion, nor the relativistic conception mentions how our assertion is jus-
tified. It seems that justification, and not truth, is decisive for assertion
meant as a pragmatic relation. Intuitionism and constructivism rest on the
following conviction:

It does not make sense to think of truth or falsity of a mathematical statement
independently of our knowledge concerning the statement. A statement is true
if we have proof of it, and false if we can show that the assumption that
there is a proof for the statement leads to a contradiction. For an arbitrary
statement we can therefore not assert that it is either true or false [van Dalen
and Troelstra, 1988, 4].

The constructivist conception of truth does not coincide with the
Tarskian conception of truth, where the truth-predicate satisfies the meta-
logical law of the Excluded Middle, as well as the metalogical law of Non-
Contradiction. In this sense, the Tarskian truth-predicate is absolute; that
is, independent of time, space, and other conditions. Even if we cannot as-
sert that a statement is either true or false, the concept of truth in the
Tarskian sense enables us to believe that the statement must be either true
or false. Here is how M. Dummett wrote about the intuitionistic notion of
truth:
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[...] ‘is true’ would have to be equated with ‘has been proved’ and ‘is false’
with ‘has been refuted’. On this use, any statement A that has not yet been
decided is neither true nor false; but this does not preclude its later becoming
true or becoming false [Dummett, 1977, 18].

Such a notion of truth, obvious as it is, already departs at once from that
supplied by the analogue of the Tarski-type truth-definition, since the predicate
is true thus explained is significantly tensed: a statement not now true may
later become true [Dummett, 1978, 239].

M. Dummett describes the intuitionistic notion of truth as endowed with
a property usually ascribed to belief, knowledge, justification, or assertion,
such as the relativisation to time. Note that justification for the realist
has distinct properties from truth, and plays a different role, a role which
consists in “binding” our beliefs with respective truths.

Assertion is regarded as a speech act taking place when the speaker
makes an utterance with an assertoric force. This conception of assertion
comes from Frege [Frege, 1918]. The same idea reappears in J. Austin’s
works, where the general theory of speech acts was founded, dividing them
in three groups: locutionary acts, illocutionary acts, and perlocutionary
acts. Acts of asserting belong to illocutionary acts. Frege and J. Austin
distinguished the act of assertion from other pragmatic phenomena such as
presupposition and implicature. A separate problem is connected with the
relationship between truth and assertion. According to A. Tarski,

asserting that p is materially equivalent to asserting that p is true.

A different account of that relationship may be found in [Dum-
mett, 1959], who identifies the act of assertion with the act which aims at
truth, which is interpreted that the speaker intends to convince the hearer
that he/she aims at saying something true. Note that it is usually assumed
that the act of assertion may be insincere in the case of lying. Assertion
may be evaluated as correct in different respects. It is commonly accepted
that:

asserting that p is correct if and only if the speaker has good evidence
that it is true that p.

The logic of assertion formulated by N. Rescher [Rescher, 1968] has the
following principles. Let Axp stand for x asserts that p, then:
1. ∀x∃pAxp;
2. (Axp ∧Axq) → Ax(p ∧ q);
3. ∼Ax(p∧ ∼p).
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The specific inference rule of this logic is called a “rule of commitment”:

(C) If p implies q, then Axp implies Axq.

The principles have respectively the following intuitive meanings: some-
one asserts something; if it is asserted p and asserted q, then the conjunction
of p and q is asserted: a contradiction is not asserted. One may say that
the principles are necessary conditions of rational thinking. By contrast,
the inference rule (C) is contentious. It tells us that the rational subject
who asserts a certain proposition also asserts the logical consequences of
the proposition. This rule is highly unrealistic, since it appeals to the con-
ception of an ideal subject who is logically omniscient.

What is then A. Grzegorczyk’s conception of assertion? First of all,
A. Grzegorczyk’s assertion is relativized not only to time, but also to re-
search, or more precisely, to the programme of research (inquiry) R, accord-
ingly

relation of assertion holds between the information state, a, obtained in
the research (inquiry) R up to the time point t, and the sentence χ.

The information state makes the relation of assertion founded on facts
independent of our consciousness. It is assumed that the information state
makes the relation of assertion correct, since it provides good evidence for
the truth of the sentence χ. Besides, asserting the negation of the sentence,
and the implication of two sentences, is what makes the relation of assertion
strong one. To assert the negation at the point of time t, it is necessary and
sufficient never later to assert the very sentence. This condition imposes
on us the requirement of careful formulation of a sentence which can never
be asserted. I cannot assert now many ordinary language utterances, such
as “It is not the case that I have short hair” unless I am sure that I will
have long hair always in the future, and I cannot assert now “It is not the
case that there is a tree nearby that building” unless I am sure that there
will never be any tree nearby that building. These examples merely suggest
that ordinary language negation is not intuitionistic negation, but they are
not an argument in favour of the view that the concept of strong asser-
tion and that of intiutionistic negation are useless. Intuitionistic negation
serves for modelling mathematical (i.e. non-empirical) discourse negation,
but not natural language negation. The strong assertion is understood as
an absolute assertion in a certain sense: what has been once asserted is
not retracted. In other words, the relation of strong assertion is monotonic,
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since new facts do not force us to retract what has been strongly asserted
before.7

4. Grzegorczyk’s Semantics and the Informational Turn in Logic

Note that A. Grzegorczyk’s relation of assertion holds between a certain
information state and a sentence. According to the contemporary Law of
Causality of Information, there is no more information received than that
which has been sent.8 In the case of empirical research, Nature sends the
information which is to be partially received, and no more can be asserted
than the information which has been received.

A. Grzegorczyk’s work on the semantics of intuitionistic calculus was
written more than a decade before the so called informational turn in logic,
which caused a new understanding of logic as information-based. The points
of evaluation, meant as information states in A. Grzegorczyk’s semantics, are
allowed to be incomplete, although they are always consistent9. At present,
we consider also inconsistent information states. From the point of view of
this informational trend in logic, Grzegorczyk’s semantics for intuitionistic
logic may be regarded as a logic of information where the relation a > χ
is understood as the relation of carrying information: the information state
a carries the information that χ. Understood in that way, Grzegorczyk’s
semantics is a sort of frame semantics, where the model contains the eval-
uation relation: >. Let the frame F be a structure containing the set of
information states S, and the binary relation of extension of the informa-
tion: b is an extension of a in the research R, which will be denoted at
present as ⊇. Therefore,

F = 〈S,⊇〉.
A model M = 〈F,⊇, >〉, where the evaluation relation >, meant as

Grzegorczyk’s relation of forced assertion, satisfies the respective conditions
for each connective of the intuitionistic language, as well as the follow-
ing monotonicity condition, a counterpart of the hereditary condition in
Kripke’s semantics:

If a > χ and b ⊇ a, then b > χ.

7 The intuitionistic negation fails to distinguish between the global future absence of
verification, and local falsification. Compare [van Benthem, 2009, 253].
8 See [Pawlowski et al., 2009].
9 There are such states of information which do not force us to assert A ∨ ¬A, while

there are no such states which force us to assert A ∧ ¬A
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J. van Benthem [van Benthem, 2009, 255] makes the important obser-
vation that intuitionistic logic registers two kinds of information:
1. Factual information about how the world is;
2. Procedural information about our current investigative process, that is,

about the way we learn facts.
J. van Benthem [van Benthem, 2009] argues that branching tree-like

models are closest to the intuitionistic tradition. They describe an infor-
mational process where an agent learns progressively about the state of the
actual world. Surely, the evaluation conditions for the intuitionistic negation
and implication in A. Grzegorczyk’s semantics register procedural informa-
tion, since they capture the dynamic of our investigative process.

There are many logics of information by now, each describing different
aspects of this complex phenomenon.10 A philosophically important notion
in studying the phenomenon of information is the notion of information ap-
plication. An interesting analysis of this notion may be found in [Sequoiah-
Grayson, 2009]. The starting point of his analysis is a set of information
states S with a partial order on it. The partial order is understood in a sim-
ilar way as A. Grzegorczyk’s relation of the extension of information. Let
the partial order be denoted as ≤. The expression x ≤ y is read as: the
information x is contained in the information y. The operator of the appli-
cation of information holds between information states. If the operator is
denoted as •, then the expression:

x • y ≤ z

is understood as the result of the application of the information in x to
the information in y develops into the information in z [Sequoiah-Grayson,
2009, 422]. The operator is an ontological counterpart of the binary connec-
tive, ⊗, occurring between formulas, which is called by S. Sequoiah-Grayson
fusion, and the expression:

A⊗B

is meant as the application of the information in the formula A to the in-
formation in the formula B. The evaluation conditions for this compound
formula are given in terms of the model-theoretic evaluation relation, de-
noted by us as: <. Accordingly, x < A, is read as x carries the information
that A,or x supports A [Sequoiah-Grayson, 2009, 410]. Thus,

xA⊗B iff for some y, z ∈ S such that y • z ≤ x, yA and zB.

10 See [Barwise and Seligman, 1997; Floridi, 2003; Jago, 2006; Mares, 1997; Restall,
1994; Sequoiah-Grayson, 2006; Misiuna, 2012], to mention only a few.
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We omit here the other connectives included to the informational lan-
guage considered by Sequoiah-Grayson [Sequoiah-Grayson, 2009]. The oper-
ator of the application of information could be easily described semantically
in terms of A. Grzegorczyk’s semantics, augmented with the binary opera-
tor •, in the following way:

a > A⊗B iff for some b, c ∈ S such that a ⊇ b • c, b > A and c > B.

5. Conclusions

We have compared A. Grzegorczyk’s semantics for Heyting’s intuitionistic
propositional and predicate calculus with the respective Kripke’s semantics.
Both semantics are of a topological kind, but Grzegorczyk’s semantics is
philosophically more acceptable than the intuitionistic Kripke models. We
have argued that the main philosophical advantage of Grzegorczyk’s seman-
tics is the lack of the model-theoretic truth-relation which is present in the
intuitionistic Kripke models. We have noted that A. Grzegorczyk makes
a distinction between different types of assertion:
• Forced assertion [Grzegorczyk, 1964];
• Potentially forced assertion [Grzegorczyk, 1964];
• Strong assertion (compared with weak assertion; [Grzegorczyk, 1967]);
• Admissibility (weak assertion; [Grzegorczyk, 1967]);
• Relation of being allowed [Grzegorczyk, 1967].

The five types of assertion may be regarded as that of a relativistic kind.
Besides relativistic assertions, A. Grzegorczyk discerns also classical and
constructivistic assertions. The other peculiar property of A. Grzegorczyk’s
semantics, besides its philosophical insight, is its anticipatory feature. We
have argued that Grzegorczyk’s semantics may be regarded as a predecessor
of many present semantics characteristic of the contemporary informational
turn in logic.
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PHILOSOPHY OF LOGIC AND MATHEMATICS
IN THEWARSAW SCHOOL OFMATHEMATICAL LOGIC*

Abstract. In the paper philosophical ideas concerning logic and mathemat-
ics developed in the Warsaw School of Mathematical Logic are considered.
The views of two important representatives of this school – Alfred Tarski and
Andrzej Mostowski – are analyzed in detail.

The Warsaw School of Mathematical Logic was a part of the Lvov-
Warsaw School of Philosophy. It belonged to the most important centers
of mathematical logic between the wars. It is natural to ask what were the
philosophical views and attitudes of logicians in Warsaw towards mathe-
matics and logic itself. One can also ask whether and to what extent those
views influenced formal and technical research, whether that research had its
source in philosophical considerations or was it independent of any philo-
sophical presuppositions. Did the philosophical views bind the technical
investigations or were they without meaning for them?

The attitude of Polish logicians and mathematicians towards the philos-
ophy of mathematics can be shortly characterized as follows: they saw the
mathematical and philosophical foundations of mathematics as independent
although connected in a way and indispensable for understanding logical and
mathematical activity. With two exceptions (Chwistek and Leśniewski) they
represented a view guided by the following two principles:
• all commonly accepted mathematical methods should be applied in

metamathematical investigations,
• metamathematical research cannot be limited by any a priori accepted

philosophical standpoint.
On the other hand, logic and mathematics have their own genuine philo-

sophical problems which should not be neglected. In particular, although

* The financial support of National Center for Science [Narodowe Centrum Nauki],
grant No N N101 136940 is acknowledged.
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metamathematical results do not solve philosophical controversies about
mathematics and logic, yet the former illuminate the latter.

What were the sources of such an attitude? One can indicate two of
them. The first one can be exemplified by Sierpiński’s work on the axiom of
choice (AC) and its applications in mathematics. In his French paper [1918]
on the role of AC, Sierpiński distinguished two independent questions:
• philosophical controversies around this axiom,
• its place in proving mathematical theorems.

According to Sierpiński the second issue should be investigated indepen-
dently of the philosophical inclinations concerning the problem whether the
axiom of choice is to be accepted or not. This opinion was included in all
editions of Sierpiński’s books on set theory from 1923 (An Outline of Set
Theory, 1923) to 1965 (Cardinal and Ordinal Numbers, 1965). In [1965, p. 94]
he wrote:

Still, apart from our personal inclination to accept the axiom of choice, we
must take into consideration, in any case, its role in set theory and in calculus.
On the other hand, since the axiom of choice has been questioned by some
mathematicians, it is important to know which theorems are proved with its
aid and to realize the exact point at which the proof has been based on the
axiom of choice; for it has frequently happened that various authors have
made use of the axiom of choice in their proofs without being aware of it. And
after all, even no one questioned the axiom of choice, it would not be without
interest to investigate which proofs are based on it and which theorems are
proved without its aid – this, as we know, is also done with regard to other
axioms.

This means simply that one should disregard philosophical controversies
(and treat them as a “private” matter) and investigate (controversial) ax-
ioms as purely mathematical constructions using any fruitful methods.

The second source of the discussed attitude of Polish mathematicians
and logicians towards philosophy was the tradition of Polish analytic philo-
sophy originated by Kazimierz Twardowski in Lvov. According to Twar-
dowski and his students, we must clearly and sharply distinguish world-
views and scientific philosophical work. This idea was particularly stressed
by Łukasiewicz, the main architect of the Warsaw school of logic. He re-
garded various philosophical problems pertaining to the formal sciences as
belonging to the world-views of mathematicians and logicians, but the work
consisting in constructing logical and mathematical systems together with
metalogical and metamathematical investigations constituted for him the
subject of logic and mathematics as special sciences. Hence philosophical
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views cannot be a stance for measuring the correctness of formal results.
Yet philosophy may serve as a source of logical constructions.

One of the consequences of the described attitude of Polish logicians and
mathematicians was the fact that they did not attempt to develop a com-
prehensive philosophy of mathematics and logic (Stanisław Leśniewski and
Leon Chwistek were here the exceptions!). They formulated their philosoph-
ical opinions concerning mathematics or logic only occasionally and only on
problems which just interested them or on which they actually worked.
Consequently there were in Poland no genuine philosophers of mathemat-
ics. Philosophical remarks were formulated by logicians and mathematicians
only on the margin of their proper mathematical or logical works (and had
no meaning for the results themselves).

The current trends and views in the philosophy of mathematics, i.e.,
logicism, intuitionism and formalism, were of course well known (and there
appeared papers discussing those tendencies, their meaning and develop-
ment). But none of them was represented in the Warsaw School. Moreover,
it did not represent any other trend; it had no official philosophy of logic and
mathematics. This followed from the belief that logic and mathematics are
autonomous with respect to philosophy. Opinions in the field of the philo-
sophy of logic and mathematics were treated as “private” problems and
philosophical declarations were made reluctantly and seldom. If they were
made then it was stressed, directly or indirectly, that these were personal
opinions.

Though some of the logical investigations were motivated by philosoph-
ical problems – e.g. the many-valued logics by Łukasiewicz – the formal, log-
ical constructions were always separated from their philosophical interpre-
tations. Another example is the investigation of intuitionistic logic carried
out among others by Tarski without accepting intuitionism as the philoso-
phy of mathematics. The programme of Janiszewski [1917] and the Polish
School of Mathematics created set-theoretical foundations of mathematics
in a methodological and not philosophical sense.

What were the separate philosophical opinions formulated by Polish
logicians, philosophers and mathematicians? We shall answer this ques-
tion considering the philosophical views of two representatives of the War-
saw School of Mathematical Logic: Alfred Tarski (1901–1983) and Andrzej
Mostowski (1913–1975). Tarski belonged to the first generation of the War-
saw School; Mostowski, to the second generation.1

1 For logic and the philosophy of logic and mathematics in Poland between the wars
see the basic monograph [Woleński, 1989] as well as [Woleński, 1992; 1993; 1995; Murawski
and Woleński, 2008; Murawski, 2004; 2011].
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Alfred Tarski was interested in philosophical problems and very ac-
tively participated in the philosophical life of his time. He was convinced
of the philosophical significance of his works, in particular of his work on
truth [Tarski, 1933]. He described himself as [Tarski, 1944]:

Being a mathematician (as well as a logician, perhaps a philosopher of
a sort) [...]

Tarski’s philosophical attitude was anti-metaphysical; he supported the idea
of scientific philosophy. He accepted a programme of “small philosophy”
which aims at detailed and systematic analysis of the concepts used in
philosophy. Such a philosophy is minimalistic, anti-speculative and sceptical
towards many fundamental problems of traditional philosophy. This atti-
tude was inherited by Tarski from the Lvov-Warsaw School and strength-
ened by contacts with the Vienna Circle. He maintained also empiricism
and abandoned the analytic/synthetic distinction. He stressed that logi-
cal and empirical truths belong to the same generic category. Influenced
by Leśniewski and Kotarbiński he was inclined to a rather strongly nom-
inalistic understanding of expressions. One finds many places in which he
confirmed this. E.g. during a symposium organized by the Association for
Symbolic Logic and the American Philosophical Association held in Chi-
cago on 29th–30th April 1965 and devoted to the philosophical implications
of Gödel’s incompleteness theorems, he said (cf. [Feferman and Feferman,
2004, p. 52]):

I happen to be, you know, a much more extreme anti-Platonist. [...] However,
I represent this very [c]rude, näıve kind of anti-Platonism, one thing which
I would describe as materialism, or nominalism with some materialistic taint,
and it is very difficult for a man to live his whole life with this philosophical
attitude, especially if he is a mathematician, especially if for some reasons he
has a hobby which is called set theory.

In the biography of Tarski written by Fefermans one finds more such
quotations, for example (cf. [Feferman and Feferman, 2004, p. 52]):

I am a nominalist. This is a very deep conviction of mine. It is so deep, indeed,
that even after my third reincarnation, I will still be a nominalist. [...] People
have asked me, ‘How can you, a nominalist, do work in set theory and logic,
which are theories about things you do not believe in?’ ... I believe that there
is value even in fairy tales.
[I am] a tortured nominalist.
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They write also: “Elsewhere Tarski has said more specifically that he sub-
scribed to the reism or concretism (a kind of physicalistic nominalism) of
his teacher Tadeusz Kotarbiński”.

Mostowski wrote about Tarski so (cf. [1967, p. 81]):

Tarski, in oral discussions, has often indicated his sympathies with nominalism.
While he never accepted the ‘reism’ of Tadeusz Kotarbiński, he was certainly
attracted to it in the early phase of his work. However, the set-theoretical
methods that form the basis of his logical and mathematical studies compel
him constantly to use the abstract and general notions that a nominalist seeks
to avoid. In the absence of more extensive publications by Tarski on philo-
sophical subjects, this conflict appears to have remained unresolved.

Tarski was inclined to identify mathematics with the deductive method.
He maintained that there is no hard borderline between formal and empiri-
cal sciences. He admitted the rejection of logical and mathematical theories
on empirical grounds. He claimed also that there is no sharp demarcation
between logical and factual truth and that the concept of tautology is un-
clear.

One must stress that all those were his “private” philosophical views
which did not influence his logical and mathematical research; in other
words, his research was independent of any philosophical presuppositions.
In the paper “Über einige fundamentale Begriffe der Methodologie der de-
duktiven Wissenschaften” [1930] he explicitly wrote:

[...] it should be noted that no particular philosophical standpoint regarding
the foundations of mathematics is presupposed in the present work.

This was typical for him and for the whole Warsaw School in logic.
This independence of logical and mathematical studies and philosophical
views explains the cognitive conflict and discrepancy between Tarski’s nom-
inalistic and empiricistic sympathies and his “platonic” mathematical and
logical practice. Note that his attitude enabled him to contribute to vari-
ous important foundational streams without the necessity of accepting their
philosophical assumptions and attempting to reconcile the philosophy and
the research practice. His programme of metamathematics can be summa-
rized by his words from the paper [Tarski, 1954] where he wrote:

As an essential contribution of the Polish school to the development of meta-
mathematics one can regard the fact that from the very beginning it admitted
into metamathematical research all fruitful methods, whether finitary or not.
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Andrzej Mostowski inherited his general philosophical attitude from
Tarski. He freely used infinitary methods and strongly insisted that no for-
mal work should be limited by philosophical assumptions. However it seems
that Mostowski felt himself obliged to a more extensive and systematic
treatment of his views in the philosophy of mathematics. In a review of
Mostowski’s Thirty Years of Foundational Studies [1965] published in Stu-
dia Logica R. Suszko characterized him as a “mathematician-logician, to
whom the philosophical aspect of logic and the theory of the foundations of
mathematics is not alien” [Suszko, 1968, p. 169].

In many of his technical papers and works Mostowski stressed in the
introductory sections or prefaces the importance and indispensability of
certain philosophical presuppositions. He discussed also the possible philo-
sophical consequences of technical mathematical results presented there.
But such comments and remarks were always reduced to a minimum and
had no influence on the technical considerations.

In the Introduction to the monograph Teoria mnogości (Set Theory)
written together with K. Kuratowski.2 they wrote [1952, p. vi]:

There exists so far no comprehensive philosophical discussion of the basic
assumptions of set theory. The problem whether and to what extent abstract
concepts of set theory (and in particular of those parts of it in which sets of
very high cardinality are considered) are connected with the basic notions of
mathematics being directly connected with the practice has not been clarified
so far. Such an analysis is needed because by Cantor, the inventor of set theory,
basic notions of this theory were enwrapped with a certain mysticism.

On the other hand the authors are convinced that the meaning and impor-
tance of set theory for the foundations of mathematics were demonstrated
also in connection with the philosophy of mathematics.

And they declare that the most important feature of set theory is the
fact that it provides a tool for other parts of mathematics which are directly
connected with applications.

The philosophical remarks were made only in the Introduction. One
finds in the book no further philosophical declarations or statements. In the
whole book the authors strictly distinguish (in the spirit of Sierpiński) the
philosophy of the axiom of choice and its role in mathematics and set theory
itself – all theorems in which AC is used are marked by a small circle.

2 The discussed remarks were reprinted in the second and third Polish editions of the
book.
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Mostowski considered also philosophical problems in connection with
Gödel’s incompleteness theorems. As in the case of set theory he indicated
only the philosophical problems connected with the discussed mathemati-
cal issues and showed possible solutions but avoided any fixed and definite
philosophical declarations. Moreover the philosophical comments were re-
duced to a minimum.

He stressed that we do not have a precise notion of a correct mathemat-
ical proof. In the paper [1972, p. 83] Mostowski emphasizes that: “A mathe-
matical proof is something much more complicated than a simple succession
of elementary rules contained in the so called inference rules. [...] Therefore
one must necessarily show moderation in stressing the role of logical rules in
[mathematical] proofs”. On the other hand the author is sure that despite
the fact that the old program of formalization of mathematics has been
practically waived “the collaboration of logic and mathematics was fruitful
and probably will still bring important results” [p. 83].

Note also that the three trends in the philosophy of mathematics which
dominated in the 20s and 30s of the 20th century (logicism, intuitionism and
formalism) were the starting point of Mostowski’s series of lectures Thirty
Years of Foundational Studies [1965]. He stressed there that they gave rise to
the development of three directions in logico-mathematical investigations:
constructivism, metamathematical and set-theoretical ones. But in the main
text one finds no further philosophical remarks.

So far we have shown that Mostowski was aware of philosophical prob-
lems connected with mathematics but avoided making any explicit philo-
sophical declarations. There is however one paper by him in which he
makes explicit declarations, namely the paper The present state of inves-
tigations of the foundations of mathematics (see [Mostowski, 1955a] and
[Mostowski, 1955b]). Unfortunately there is a problem of interpretation: the
paper was written in the first half of the fifties and the ideological atmo-
sphere of that time could have had an influence on it. It is not possible now
to decide to what extent outside factors influenced the paper. On the other
hand the author could have restricted himself to purely mathematical issues
and avoided entirely any philosophical remarks and declaration. If he did
not do so we can treat his remarks as genuine.

He states there (cf. [Mostowski, 1955a, p. 42]):

[...] An explanation of the nature of mathematics does not belong to mathe-
matics, but to philosophy, and it is possible only within the limits of a broadly
conceived philosophical view treating mathematics not as detached from other
sciences but taking into account its being rooted in natural sciences, its appli-
cations, its associations with other sciences and, finally, its history.
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Investigations on the foundations of mathematics by mathematical
methods affect the formation of a broader philosophical view. The results
obtained there confirm – according to Mostowski (cf. 1955a, p. 42]):

the assertion of materialistic philosophy that mathematics is in the last resort
a natural science, that its notions and methods are rooted in experience and
that attempts at establishing the foundations of mathematics without taking
into account its originating in the natural sciences are bound to fail.

Hence, Mostowski represents here an empirical point of view in the
philosophy of mathematics. As mentioned above it is not quite clear what
was the influence of outside factors (in particular of the then dominant
ideology) on those views. Specific expressions used by him may suggest
such an influence. Such statements could be, at least partially, the price
that had to be paid to the official philosophy. On the other hand, note that
empirical (or quasi-empirical) trends have been since the sixties of the last
century still more and more vivid in the philosophy of mathematics.

Mostowski admitted in various places that constructivism (especially
its aims, not necessarily its solutions) was always very attractive to him
(cf. [Mostowski, 1959, p. 192]). The reason for that was the fact that
(cf. [Mostowski, 1959, p. 192]):

it wants to inquire into the nature of mathematical entities and to find a justi-
fication for the general laws which govern them, whereas platonism takes these
laws as granted without any further discussion.

He stressed that constructivistic trends in the foundations of mathe-
matics are nearer to nominalistic philosophy than to the idealistic (in the
Platonic sense) one. This nominalistic character implies that constructivism
does not accept the general notions of mathematics as given but tries to con-
struct them. “This leads to the result that one can identify mathematical
concepts with their definitions” [Mostowski, 1959, p. 178]. The advantage of
nominalism is the fact that several important mathematical theories have
been reconstructed in a satisfactory way on a nominalistic basis and those
reconstructions have turned out to be equivalent to the classical theories.

∗
∗ ∗

Polish logicians and mathematicians, being convinced of the importance
of philosophical problems and knowing quite well the current philosophical
trends, treated logic and mathematics as autonomous disciplines indepen-
dent of philosophical reflection on them, independent of any philosophi-
cal presuppositions. Therefore they sharply separated mathematical and
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logical research practice and philosophical discussion concerning logic and
mathematics. Philosophical views and opinions were treated as a “private”
matter that should not influence mathematical and metamathematical in-
vestigations. On the contrary, in the latter all correct methods could and
should be used. This “methodological Platonism” enabled Polish logicians
and mathematicians to work in various areas without being preoccupied by
philosophical dogmas. In controversial cases, as for example in the case of
the axiom of choice in set theory, their attitude can be characterized as neu-
tral – without making any philosophical declarations they simply considered
and studied the various mathematical consequences of both accepting and
rejecting controversial principles, and investigated their role in mathematics.
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A PEIRCIAN RECONCILIATION OF
THE OLD AND THE NEW LOGIC*

Abstract. With the ascendancy of Peter Strawson’s account of the categorical
sentences of traditional logic, Sterling Lamprecht offered an alternative. The
present paper attempts to bolster Lamprecht. It does this by distinguishing
and offering different logical forms for each of the categorical sentences of tra-
ditional logic. One of the three does fit with the form now in almost all logic
texts. A second is really a matter of plural quantification. However a third,
suggested in Lamprecht and found in Peirce, should be dealt with in terms of
restricted quantifiers when these are instantiated in a suitable way. These are
instantiated in a suitable way. Quine cited Peirce to this effect. It is this re-
stricted quantification scheme that does yield a full Square of Opposition and
benefits beyond that as well. In this paper I offer a formal account thereby sav-
ing the traditional claims with special restricted quantifiers. These quantifiers
have rules that parallel unrestricted ones.

Keywords: Expanding the Pierce-Quine, Account/Defense of Traditional
Logic, Pierce’s Defense of Traditional Logic

1. Distribution – Quine’s Use of Peirce Against Geach

The doctrine of distribution is a central theme in the traditional logic of
categorical syllogisms. One speaks of the subject and predicate terms as to
whether they are distributed or not. Keynes says that “a term is said to
be distributed when reference is made to all of the individuals denoted by

* I am particularly indebted to the Polish philosophical tradition in a personal as
well as a professional way. My most important doctoral advisor was Henry Hiz. His friend
George Krzywicki-Herbut was a C.U.N.Y. colleague as well as my sometime ski instructor.
They served in the Polish armed forces in the early days of the second World War and
met in a prisoner of war camp. Unfortunately I did not spend as much time with Professor
Grzegorczyk. However, he was generous in meeting with me in Warsaw. I gained much
from his conversation, and later from his correspondence and his publications. His History
of Logic should be better known. It is a notable addition to the unique Polish tradition
of writing on this history. Andrzej Grzegorczyk was unconventional. He maintained both
the most rigorous approach in logic and an existentialist stance on broader philosophical
questions.
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it ... undistributed when they are referred to only partially ...” [Geach, 1962,
p. 28]. There are rules of quantity and of quality for evaluating the validity
of such syllogisms. Those of quantity apply to the distribution of terms. “Il-
licit process” is the name for violating the rule which requires that a term
distributed in the conclusion must be distributed in a premise. The fallacy
of “Undistributed middle” violates the rule requiring that the middle term
(the term occurring once in each premise) be distributed in one of these
premises. I shall anachronistically argue that these rules constitute an algo-
rithm, a decision procedure, for testing the validity of standard categorical
syllogisms.

In a somewhat well known piece, Peter Geach claimed that the doctrine
of distribution is seriously flawed. Then in a much less well known piece
Quine defended Peirce’s version of the doctrine. In his review of Geach’s
Reference and Generality [1962], Quine [1964] maintained that Geach had
failed to show that the doctrine of distribution is defective. What a surprise
it is to see Quine defending a doctrine of traditional Aristotelian logic.
He comments that the purported flaws Geach cites are not in the doctrine
itself, but in flawed accounts of it. Quine likens the situation to one in which
Boolean Algebra would be condemned because of flaws in Boole’s manner of
explaining it. “One might as well denounce Boolean Algebra by fastening on
Boole’s mistakes and confusions” [Quine, 1964, pp. 100–1]. Geach followed
a deplorable practice of reading authors, especially past ones, in a narrow
unsympathetic, if not biased, spirit. The material on distribution appears in
the first chapter of Reference and Generality. It had appeared as an article
and was reprinted in at least one collection. Quine’s review is short. He does
not spend much time on the topic and his rejection of Geach’s claim consists
of citing some lines he says are derived from Peirce.1

1 I could not find this material at the place in Peirce where Quine locates it.
It is somewhat ironic that Quine should cite Peirce. Peirce was aware of the history

of logic in ways that Frege, Russell, Quine himself and other proponents of the “existence
is what existential quantification expresses” approach were not. Unlike Quine and his
precursors, Peirce connected quantification with products and sums. His notation for the
universal and the “existential” quantifier were “Π” and “Σ”. As far as I know he did not
speak of the “existential quantifier” or link existence and quantification. The historian
Bocheński comments on Peirce’s view as a “rediscovery” of ideas found in the Terminist
Albert of Saxony [Bochenski, 1961, p. 349]. Peirce wrote on Ockham and this Terminist
tradition. They treated categoricals in terms of a descent to conjunctions and disjunctions
of singular sentences. This aspect of supposition theory furnished part of the motivation
for adopting an all/some – and/or material adequacy condition for the quantifiers. As
Albert of Saxony stated

A sign of universality is one through which a general term to which it is adjoined is
denoted to stand, in a conjunctive manner, for every one of its values (supposita).
A sign of particularity is one through which a general term is denoted to stand, in
a disjunctive manner, for every one of its values [Moody, 1953, p. 45]
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Distribution comes to be registered by the word “every” when we para-
phrase the four forms into terms of identity and distinctness thus:2

All S are P : Every S is identical with some P or other.
Some S are P : Some S or other is identical with some P or other.
No S are P : Every S is distinct from every P .
Some S are not P : Some S or other is distinct from every P .
[Quine, 1964, p. 100]

Quine does not say more, but his point should be clear. The presence
or absence of something like universal quantification with respect to the
traditional subject and predicate terms coincides with what the doctrine
of distribution claims. In other words, the logical form of the four types of
categorical sentences coincide with whether the quantifications (quantifier
phrases) or their equivalents are universal or particular (so-called “existen-
tial” generalizations).

2. Canonical Notation, Paraphrase, and Regimentation

A few words are in order about views on canonic notation, paraphrase and
regimentation. Quine 1960, pp. 157–61 offers a distinctive view of the ar-
tificial language of first order predicate logic supplemented by sentences
of English (natural language) which serve as paraphrases of the artificial
notation and at the same time are supposed to improve upon, i.e., regi-
ment other English locutions. Quine’s official canonical notation consists
of certain predicate logic sentences and their English paraphrases. These
sentences contain unrestricted universal and particular/“existential” quan-
tifiers, truth functional sentence connectives, predicates, individual vari-
ables (no names-names are Quinized into definite descriptions, and then
Russelled away), and an identity sign. No claims are made about syn-
onymy being a requirement for paraphrasing into the artificial symbolic
notation, or for paraphrasing from non-canonical English forms to canoni-
cal ones.

There are three goals served by Quine’s conception of a canonical no-
tation:
1. as an aid to communication,
2. for deduction, and

2 The idea is from [Peirce, 1931–1935, 2.458].
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3. for delineating a philosophical set of categories (“the inclusive concep-
tual structure of science – called philosophical, because of the breadth
of the framework concerned” – The quest of a simplest clearest overall
pattern of canonical notation is not to be distinguished from a quest
of ultimate categories, a limning of the most general traits of reality”)
[Quine, 1960, p. 161]
ad 1. As an aid to communication one function of the canonic notation

is to resolve ambiguity. The ambiguity of the sentence “Dogs are friendly”
can be resolved by supplying a universal or a particular quantifier.

ad 2. The notation of predicate logic and its canonic English paraphrase
constitutes the content of logical theory, the science of deduction.

ad 3. A conspicuous example of the philosophical utility of this canon-
ical notation for Quine is the use of the particular/existential quantifier to
express existence claims and to help to determine ontological commitment.
In one respect I would add an element to Quine’s account of the aims of
a canonic notation. For the purposes of communication and deduction it is
necessary to include an appeal to linguistics. Linguistic differences are con-
nected with logical differences. Moreover, this addition is in keeping with
Quine’s naturalistic methodology, ensuring among other things that we are
conservative and do not mutilate linguistic data.

In his Methods of Logic [Quine, 1982, pp. 93, 95; p. 81] three types of
each categorical sentence are taken as paraphrasable into predicate logic
notation as unrestricted generalizations of conditionals and conjunctions.
For simplicity’s sake, I concentrate on the A form sentences. There is the
plural form with a restricted quantifier, ‘All A are B’, the restricted quan-
tifier singular copula form, ‘Every A is a B’, and the unrestricted quantifier
conditional form, ‘If anything is an A then it is a B’. To repeat, Quine
does not claim that the relation between these three sentences is that of
synonymy. Outside of the Geach review Quine seems to hold the view that
there need not be any one right solution as to which of the three is to be
preferred. Given a sentence and a context any one of these three forms may
serve as canonical English versions of a predicate logic unrestricted univer-
sal generalization over a conditional. They are put on a par in Methods of
Logic. But in the review, for the purpose of defending the doctrine of distri-
bution, he seems to give special prominence to a slight variant, the singular
copula form. This occasions a problem. Whereas on Quine’s official view
of canonical notation each of these English sentences is on a par, from the
standpoint of the review (trying to capture the notion of distribution and its
use in logic) we have to single out the singular copula restricted quantifier
sentence for special consideration.
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3. Resolution

Let us follow the Peirce line taken in Quine’s review. We will take the
singular copula form for special consideration and try to follow Quine’s
practice in holding that logical forms are revealed in terms of a variant
of first order predicate logic translations. To reveal the traditional pat-
terns of distribution, i.e., universality and particularity (existential quan-
tification), I suggest regimenting Quine’s four Peircean categorical sen-
tences, such as “Every A is some B or other”, into restricted quantifier
singular copula claims and then representing them in predicate logic as
follows:

Every A is a B as (x,Ax)[(∃y,By)x = y]
At least one A is a B as (∃x,Ax)[(∃y,By)x = y]

No A is a B as (x,Ax)[¬(∃y,By)x = y]
At least one A is not a B as (∃x,Ax)[¬(∃y,By)x = y]

We now have a closer correlation between (a more perfect paraphrase
of) these quantified singular copula English sentences and their predicate
logic formulations. Both the predicate logic formulations and the English
sentences consist of restricted quantifiers: ‘Every A’, ‘At least one B’/‘B,
and a singular form of the copula dealt with in terms of identity. This regi-
mentation and its predicate logic expression is the one that least mutilates
the natural language singular copula generalizations. It might be that the
identity involved is a version of the “dreaded” identity theory of the copula
(or of predication). As such, it might provide a tool for re-examining the
debates surrounding that notion.

Adhering to Quine’s naturalistic methodology, and in particular, to the
maxim of being conservative (his maxim of minimal mutilation) when choos-
ing between different hypotheses, we note the following. The plural ‘All A
are B’ involves restricted plural quantification. It differs from the standard
unrestricted universal quantification over a conditional form. And along the
same line of reasoning, this plural form should also be distinguished from the
above singular copula form. So, instead of taking all three forms on a par as
Quine [1982, p. 81] and many others do, we should distinguish them. Only
the last, the conditional English sentence, is best taken as a canonical En-
glish paraphrase of the predicate logic unrestricted universal generalization
of a conditional, ‘(x)(Ax→ Bx)’. As far as I know in the main body of his
work, Quine did not follow this policy of distinguishing the three forms of
categorical sentences. He equated all three forms and deals with them in
terms of unrestricted quantification.
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As an aside, here are some conjectures as to why one might be led with
Geach to doubt the doctrine of distribution. If we take the plural ‘All A are
B’ or the conditional ‘If anything is an A, then it is a B’, forms as basic,
then there is no sign in English of a special quantifier phrase associated
with the predicate. Doing this makes the doctrine of distribution for the
predicate term highly questionable. When we concentrate on the plural and
conditional forms, it seems intuitive that the subject term is distributed.
But given scope considerations we might think that the predicate is dis-
tributed as well, since the English quantifiers in these cases can be taken
as having scope over the predicate position. Matters are made even worse
for seeing whether a traditional predicate involves a distribution pattern,
when we follow the mutilating tradition of ignoring the logical contribu-
tion of the copula. This occurs when the predicate, e.g., ‘is a human’, is
construed holophrastically with the copula and the indefinite ‘a’ parts of
a fused predicate, e.g., ‘is-a-human’, and playing no distinct roles.

As noted above, Quine’s favored canonical role for quantification allows
only for unrestricted quantifiers. He holds the view that where there appears
to be a need for restricted quantification, it can be restated as, i.e., reduced
to, an unrestricted quantification by the expedient of treating restricted
universal/existential quantifications as unrestricted universal/“existential”
quantifications over conditionals/conjunctions. (Quine, Set Theory and its
Logic p. 235) The desired restricted A form, (x,Ax)(∃y,By)[x = y], appears
in canonic predicate logic notation in terms of unrestricted quantification as

(x)[Ax→ (∃y)(By&x = y)]

and the restricted I form, (∃x,Ax)[(∃y,By)x = y], as

(∃x)(Ax&(∃y)(By&x = y)].

But doing so, creates problems. To begin with, the I form would not
be a logical consequent of the A form as it is in traditional logic and its full
square of opposition.3 Another problem concerns distribution. The above
treatment amounts to abandoning the quest to explicate the doctrine of

3 Some (e.g., Dorothy Edgington, Gyula Klima) propose adding the conjunct (∃x)Ax
to the unrestricted version of the A form, to yield

(x)[Ax→ (∃y)(By&x = y)]&(∃x)Ax.

The A form does imply the I form, but the term A is now both distributed and undis-
tributed. The constraints for paraphrasing enlisted below in the paper mitigate against all
such uses of unrestricted quantifications in connection with the singular ‘Every A is a B’
form. It violates the maxim of minimal mutilation to supply the English singular copula
sentence with a predicate logic representation containing elements of conditionality and
conjunction.
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distribution. If we try to explain distribution in terms of the unrestricted
quantifier and its scope, the predicate as well as the subject is included in
that scope. This conflicts with the doctrine of distribution view that the
predicate is not distributed. If we say that the predicate is both distributed
and undistributed, we surrender the exclusive nature that the distinction is
supposed to have.

Even assuming that the rules of quantity which pertain to the doctrine
of distribution are accounted for, how would one begin to give a unified
account of the rule of quality and a unified account of both the rules of
quantity and of quality? The singular copula approach with its own rules of
derivation (see the next section) will accomplish all of this. We assume the
constraints on being a categorical syllogism, i.e., having three categorical
sentences with exactly three terms arranged so that the two appearing in
the conclusion, appear separately, one in each premise and the third term
(the middle term) appears once in each premise. The rule for illicit process
records the fact that one cannot derive a universal claim from an existen-
tial one. The remaining rule of quantity, i.e., undistributed middle, and
the rules of quality pertain to the element of identity. Undistributed mid-
dle insures that the terms of two different identity claims provided by the
premises allow for substitutivity which will yield the identity claimed in the
conclusion. Considerations concerning the substitutivity of identity require
that one of the premises be an identity claim when the other premise is an
inidentity claim. We can’t have two negative premises, since two inidentities
in these contexts will not yield a conclusion. Lastly, if one premise involves
an identity claim and the other doesn’t, then a valid conclusion must be an
inidentity claim which results from substitution in the inidentity premise in
terms of the remaining identity premise.

4. Providing a Formal System

To some extent I am tempted to try to leave the matter of supplying a formal
framework open, and allow that any number of different systems might
be taken to fit in with the above approach. Restricted quantification is
in keeping with work done on plural quantification along the lines either
of Neale [1990] or Bach’s [1989] restricted quantification treatments, or in
some ways with the Oxford binary quantification accounts of Wiggins [1985]
or Davies [1981]. Both these restricted quantifiers and the binary ones are
grounded in a theory of generalized quantifiers derived from Mostowski’s
paper on generalized quantifiers [1967]. It has become better known in logic
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and linguistics through the work of Barwise and Cooper [1981]. However,
I will put aside the above suggestions and take a different approach – one
which will adapt Benson Mates’ method of Beta-variants. This adaptation of
Mates provides us with truth conditions for my special restricted quantifiers.
Here is a sketch of a system of rules of inference along the lines of the tree
method and some considerations motivating these rules.

The account I favor begins by utilizing the restricted quantification no-
tation adopted for the categorical sentences given in the previous sections.
We need an account of the instances appropriate to these generalizations.
A key idea is that a restricted universal generalization can be instantiated
with an appropriate sentence containing a demonstrative noun phrase. For
example, ‘Every human is a mammal’, should imply by a universal instanti-
ation rule ‘This/that human is a mammal’. It should not imply ‘That horse
is a mammal’. The task then is to come up with a suitable predicate logic
notation, rules of inference, and truth conditions.

I start with a notation and rules for trees which will fit in with the
project so long as we confine ourselves to classic Aristotelian syllogisms
and the square of opposition. These will be followed by a fuller system
which takes into account more complex cases and relates restricted and
unrestricted quantification.

Add to the language of predicate logic restricted quantifiers such as
(x,Ax), (∃x,Bx). These quantifiers are the representations in predicate
logic form of English quantified noun phrases: Every A, At least one B.
Placing these in front of appropriate open sentences yields well formed
formulas. We need symbolic counterparts of English demonstrative noun
phrases, e.g., This A, That B, which will serve as the canonical substituends
of restricted quantifiers and occur in the sentences serving as canonical in-
stances of such generalizations. Since these canonical substituends are singu-
lar terms, use lower case letters with superscripts, e.g., a1, b2, etc., in a spe-
cial way. Just as the English ‘this A’ somewhat formally indicates by the
presence of the same noun that it is an appropriate substituend for the
restricted quantifier ’Every A’ use a lower case letter (with a superscript),
e.g., a1, a2, that is the lower case version of the capital letter occurring in
the quantifier phrase, e.g., (x,Ax). In this notation, Ba1 would be a cor-
rect or canonical substituend for the formula (x,Ax)Bx, but Bb1 would
not. The former corresponds to the correct inference that (this apple) is red
given that (Every apple) is red, while the latter would be like reasoning that
(this bird) is red since (Every apple) is red. Using the same letter of the
alphabet in a lower case as the restriction on the quantifier, mimics, in our
notation, the relation, in English, of the restriction on the natural language
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quantifier to its canonical demonstrative noun phrase. The superscript on
the singular term serves to distinguish the substituends, e.g., a2, b1, for re-
stricted quantifiers, from the ordinary singular terms, such as, a, b, c, x, y,
which serve as substituends for variables of unrestricted quantifiers.4

We adopt the method of trees/semantic tableaux for unrestricted quan-
tifiers and also adapt it by formulating rules of universal and existential
instantiation and quantifier exchange for restricted quantifiers as follows:

Tree Rules

The following rules of inference applying to restricted quantifiers are
added to the standard tree rules for unrestricted quantifiers.

Restricted Universal Instantiation

(x,Ax)φx

φa1

(as individual constants use the lower case letter of the restriction on the
quantifier with superscripts to distinguish these canonical instances for re-
stricted quantification from instances associated with unrestricted quantifi-
cation)

Particular “Existential” Instantiation

(∃x,Ax)φx
φai

where ai is new to the tree

Quantifier Interchange (Duality)

¬(x,Ax)φx

(∃x,Ax)¬(φx)

¬(∃x,Ax)φx
(x,Ax)¬(φx)

This system will do for classic Aristotelian logic. Here is an example of
how it works for Darii: Every C is an A, Some B is a C, so Some A is a B.
The tree closes:

4 More sophisticated non-syllogistic reasoning requires a more sophisticated type of
mimicking. See below The Full System.
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1. (x,Cx)[(∃y,Ay)x = y]√
2. (∃x,Bx)[(∃y,Cy)x = y]√
3. ¬(∃, Ax)[(∃y,By)x = y]

4. (x,Ax)¬[(∃y,By)x = y] 3 Quantifier Interchange√
5. [(∃y,Cy)b1 = y] 2 E.I., i.e. Existential Instantation
6. b1 = c1 5 E.I.√
7. [(∃y,Ay)c1 = y] 1 U.I.
8. c1 = a1 7 E.I.√
9. ¬[(∃y,By)a1 = y] 4 U.I.

10. (y,By)¬a1 = y 9 Quantifier Interchange
11. ¬a1 = b1 10 U.I.
12. ¬c1 = b1 8, 11 Identity
13. c1 = b1 6 Identity

×
However, a full system also has to

a. connect restricted and unrestricted generalizations and
b. take cognizance of complex restrictions on quantifiers and reasoning

involving them.
I offer the following notation and rules.
Let ‘(txn)Ψxn)’ be a singular term. In quasi English it says ‘this/that

Ψ’.

III. The Full system

The full rule of Restricted Universal Instantiation

(x,Ψx)Φx

Φxn(txn)(Ψxn)

We also have full Restricted Particular “Existential” Instantia-
tion

(∃x,Ψx)Φx
Φxn(txn)(Ψxn)

where n is new to the tree
and full Quantifier Interchange (Duality)

¬(x,Ψx)Φx

(∃x,Ψ)¬Φx

¬(∃x,Ψx)Φx
(x,Ψx)¬Φx
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This will still only do the job that the notation and rules for “sim-
ple/fused” predicates did. As it stands, it does not cover reasoning with
complex predicates. We arrive at a quite natural solution by focusing on
the demonstrative noun claims serving as instances. To begin, note that
the English expressions ’this’ and ’that’ serve two roles. They serve as de-
terminers in noun phrases: ’(That oak desk) is heavy’, and they can stand
alone as demonstratives: ‘(That) is heavy’. In the right circumstances, both
‘(That oak desk)’ and ‘(That)’ demonstrate the same item. So when stand-
ing alone, t3, can be thought of quite naturally as being like an individ-
ual constant, a name. The following is a familiar equivalence pertaining to
names.

Fa↔ (∃x)(x = a&Fx)
So for Hx1(tx1)(Dx1), i.e., That desk is heavy, we put
(∃x)(x = t1&Dx1&Hx1), i.e. That is a desk and it is heavy.
And in general we take as a contextual definition:

Ψxn(txn)(Φxn) =def. (∃x)(x = tn&Φx)&Ψx)

It is quite simple showing that the reasoning from ‘That brown dog is
friendly’ to ‘That dog is friendly’ is valid.

The truth conditions for this system can be a variant of Mates’ method
of beta variants [Orenstein, 1999; 2000]. One might also be able to provide
some other method, a substitutional quantifier account or perhaps following
the lines of generalized quantifiers.
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CZEGO INFORMATYCY NAUCZYLI SIĘ
OD ANDRZEJA GRZEGORCZYKA?

Abstract. The paper of Andrzej Grzegorczyk [1953] on the hierarchy of primi-
tive recursive functions was published in 1953.1 Till today it is one of the most
frequently cited results of a Polish author in computer science literature; the
number of citations is near a thousand. Moreover, the paper is cited by eminent
computer scientists, e.g. [Cook, 1983; Hartmanis and Hopcroft, 1971; Meyer
and Ritchie, 1967; Muchnick, 1976; Mehlhorn, 1974], quite often the laureates
of prestigious prizes.
For sixty years Andrzej Grzegorczyk’s works in the domain of logic have ob-
tained many important results. These results has found applications (quite of-
ten surprising ones) in various domains of computer science [Maksimova, 2007;
Ornaghi et al., 2006; Görnemann, 1971; Cohn et al., 1997; Wolte and Za-
kharyaschev, 2002; Rauszer and Sabalski, 1975].
In 2003 Andrzej Grzegorczyk found a new proof for Gödel’s undecidability
result. The proof constructed by Grzegorczyk omits arithmetization, which
makes the proof of Gödel so difficult in understanding. His reasoning [Grze-
gorczyk, 2005] makes use of a much simpler notion of the discernibility of texts;
the arithmetic of natural numbers has been replaced by a simpler theory of
concatenation of texts.

1. Wprowadzenie

Andrzej Grzegorczyk sam nie uważa się za informatyka, por. bibliografię jego
prac w [Krajewski and Woleński, 2008]. A jednak, jego prace i publikacje
mają znaczenie
• dla matematycznych podstaw informatyki (dla badań) oraz
• dla wykształcenia wielu informatyków (dydaktyka).

Jego książki i monografie z monografią Zarys logiki matematycznej
[1961] na czele, stanowią doskonałe wprowadzenie do teorii funkcji obliczal-
nych. Zostały przetłumaczone na kilka języków i wielu informatyków uczyło
się z nich o funkcjach obliczalnych.

1 The present text is a modified, Polish version of an earlier article [Salwicki, 2008].
The presentation of Grzegorczyk’s hierarchy has been rewritten. New chapters 5 and 6
were added. The presentation of the result of Meyer and Ritchie [1967] was extended.
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Dwa wyniki Andrzeja Grzegorczyka spinają jego dorobek w dziedzinie
podstaw matematyki i informatyki. Są to:
• Napisana w wieku 30 lat rozprawa habilitacyjna [Grzegorczyk, 1953] i
• opublikowana w wieku 80+ praca [Grzegorczyk, 2005] prezentująca ory-

ginalny dowód twierdzenia o nierozstrzygalności.
Jego wyniki nauczyły nas czegoś istotnego o obliczalności i kilka pokoleń
informatyków inspirowało się wynikami profesora Andrzeja Grzegorczyka.
Grzegorczyk ma wyniki w innych działach podstaw matematyki: oprócz
hierarchii Grzegorczyka można przeglądając literaturę napotkać:
• aksjomat Grzegorczyka w logice modalnej,
• logikę Grzegorczyka [Maksimova, 2007],
• indukcję Grzegorczyka [Cornaros, 1995],
• regułę Grzegorczyka [Ornaghi et al., 2006],
• aksjomat Grzegorczyka w logice silniejszej niż logika intuicjonistyczna

[Grzegorczyk, 1964b; 1964a; Görnemann, 1971; Rauszer and Sabal-
ski, 1975; Gabbay, 1974; M., 1981].
Może zaskakiwać odnalezienie pracy [Ornaghi et al., 2006] na temat

języków obiektowych, w której autor stosuje regułę Grzegorczyka dla mo-
delowania systemów informacyjnych.

Istnieje też praca [Bonner and Mecca, 2000], w której wyniki Grzegor-
czyka cytowane są w kontekście baz danych.

2. Hierarchia Grzegorczyka

W rozprawie habilitacyjnej Grzegorczyka opublikowanej w 1953 r. dopatru-
jemy się pionierskiego wyniku na temat złożoności obliczeniowej. Następne
prace na ten temat pojawiły sie kilkanaście lat później, zobacz przeglądowa
praca Hartmanisa i Hopcrofta [1971]. Dziś po 60 latach wynik Grzegorczyka
jest wciąż cytowany i inspiruje wielu badaczy problemów w teoretycznej
informatyce. Jest to jedna z najczęściej cytowanych prac polskiego autora
w literaturze informatycznej. Co więcej cytowania te znajdują się w pracach
autorów wybitnych, często laureatów nagród tak prestiżowych jak nagroda
Turinga. Problemy sformułowane w tej pracy wciąż inspirują kolejne pokole-
nia badaczy. Ponadto, w wielu nowych gałęziach informatyki powstają prace
odwołujące się do wyniku Grzegorczyka z 1953 r.

Jak objaśnić hierarchię Grzegorczyka? Mówiąc ogólnie hierarchia ta
eksponuje strukturę klas złożoności w zbiorze funkcji pierwotnie rekuren-
cyjnych PR. Zbiór PR funkcji pierwotnie rekurencyjnych jest najmniejszym
zbiorem zawierającym funkcję stałą 0, funkcję następnika x + 1, funkcje
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rzutowania i zamkniętą ze względu na podstawienia i rekursję prostą (por.
Definicje 2.1, 2.2 poniżej).

Grzegorczyk wykazał, że w zbiorze tym istnieje hierarchia. Funkcje znaj-
dujące się na niższym piętrze hierarchii nie rosną tak szybko jak funkcje
z pięter wyższych.

Wynik pracy [Grzegorczyk, 1953] może być streszczony następująco:
Istnieje pewien rosnący ciąg zbiorów funkcji pierwotnie rekurencyjnych

E0  E1  E2  E3  . . .  En . . .
taki, że

⋃

n∈N
En = PR.

Każdy zbiór En jest domknięty ze względu na podstawienia i ograniczoną
rekursję prostą. Jego funkcje początkowe są funkcjami pierwotnie rekuren-
cyjnymi.

Podczas przedstawienia szkicu dowodu posłużymy się pracami przeglą-
dowymi [Rose, 1984; Gakwaya, 1997] oraz notatkami do wykładu Kevina
Kelly [2012].

Definicja 1

Zbiór podstawowych funkcji obliczalnych jest zbiorem

B = {Z,S} ∪ {pni : 1 ≤ i ≤ n, n ∈ N},
gdzie

Z : N → N , funkcja stała zero,
S : N → N , funkcja następnika,
dla każdego n ∈ N i dla każdego i ∈ {1, . . . , n}
pni : Nn → N , funkcja rzutowania pni (x1, . . . , xn) = xi. �

Będziemy rozważać różne zbiory funkcji domknięte ze względu na dwie
operacje superpozycji oraz ograniczonej rekursji prostej.

Definicja 2

Superpozycja S. Niech h1, . . . , hn będą funkcjami r argumentowymi
(r ≥ 1, n ≥ 0) a g niech będzie funkcją n argumentową. Powiadamy, że
funkcja f jest otrzymana przez superpozycję funkcji g i funkcji h1, . . . , hn
jeżeli dla dowolnych argumentów x = (x1, . . . , xr)) zachodzi następująca
równość

f(x) = g(h1(x), . . . , hn(x).
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Rekursja Prosta RP. Niech g będzie funkcją r argumentową i niech
h będzie funkcją o r + 2 argumentach. Jeśli dla dowolnych argumentów
x = (x1, . . . , xr)) zachodzi







f(x, 0) = g(x)

f(x, t+ 1) = h(x, t, f(x, t))

to mówimy, że funkcja f została otrzymana z funkcji g oraz h przez zasto-
sowanie schematu rekursji prostej.
Ograniczona Rekursja Prosta ORP. Rozważmy trójkę funkcji 〈g, h, j〉,

gdzie g i h mają własności wymienione powyżej, a funkcja j ma r+ 1 argu-
mentów. Funkcja f jest wynikiem ograniczonej rekursji prostej gdy została
uzyskana z funkcji g i h przez rekursje prostą i gdy jest ograniczona przez
funkcję j, tzn. f(x, t) ≤ j(x, t). �

Każda funkcja pierwotnie rekurencyjna jest określona jako wynik
stosowania skończoną liczbę razy operacji superpozycji oraz rekursji prostej
do funkcji bazowych. Wydawać by się mogło, że hierarchię stworzą piętra –
zbiory funkcji definiowane przez coraz większą liczbę zastosowań schematu
rekursji prostej. Tak jednak nie jest.

Do określenia hierarchii podzbiorów zbioru funkcji pierwotnie rekuren-
cyjnych potrzebne są:
a) „kręgosłup” na którym zbudujemy hierarchię tj. ciąg funkcji Ei o coraz

większej złożoności (w tym przypadku funkcji coraz szybciej rosnących)
oraz,

b) wyrzeczenie się rekursji prostej i stosowanie wyłącznie ograniczonej
rekursji prostej.
W naszym przypadku określimy następujący ciąg funkcji:

E1(t)
df
= t2 + 2,

En(t)
df
= Etn−1(2) dla wszystkich n ≥ 2.

Można sprawdzić, że taki ciąg funkcji spełnia warunki (i) oraz (ii)
wymienione powyżej.

Zauważmy następujące własności funkcji En.

Lemat 3

Dla każdego n, i dla każdego t zachodzą następujące nierówności:

t+ 1 ≤ En(t),

En(t) ≤ En+1(t),
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En(t) ≤ En(t+ 1),

(∀m) Emn (t) ≤ En+1(t+m). �

W dalszym ciągu potrzebować będziemy jeszcze dodawania

E0(t1, t2)
df
= t1 + t2.

Teraz określimy klasy Grzegorczyka En.

Definicja 4

Zbiory En są zdefiniowane następująco:

E0 df
= 〈B;S,ORP〉,

En+1 df
= 〈B ∪ {E0} ∪ {En};S,ORP〉, dla każdego n.

Na mocy definicji każdy zbiór En jest domknięty ze względu na operacje
superpozycji S i ograniczonej rekursji prostej ORP. Dla każdego zbioru En+1

jego funkcje bazowe {B ∪ {E0} ∪ {En}} są funkcjami pierwotnie rekuren-
cyjnymi. �

Posługując się poprzednim lematem można dowieść:

Lemat 5 (Lemat wzrostu)

Niech t = (t1, . . . tn) oznacza krotkę argumentów.

• Funkcje ze zbioru E0 są ograniczone przez funkcję ti + cf :
(∀f ∈ E0)(∃i, cf ∈ N)(∀t) f(t) ≤ ti + cf ,

• Funkcje ze zbioru E1 są ograniczone przez funkcje liniowe:
(∀f ∈ E1)(∃c0, c1, . . . , cn ∈ N)(∀t)f(t) ≤ c0 + c1 · t1 + · · · + cn · tn,

• Dla n ≥ 2, każda funkcja f ze zbioru En jest ograniczona przez odpo-
wiednią iterację funkcji wzrostu En:
(∀n ≥ 2)(∀f ∈ En)(∃mf )(∀t) f(t) ≤ E

mf

n−1(max(t)). �

Stosując argument przekątniowy można wykazać, że En 6= Em, dla n 6= m.
Dowód wykorzystuje fakt, że każda klasa En zawiera funkcję, której funkcja
wzrostu rośnie wraz z indeksem n. W ten sposób otrzymuje się fundamen-
talny wynik:
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Twierdzenie 6

Istnieje ściśle rosnący ciag zbiorów funkcji pierwotnie rekurencyjnych

E0  E1  E2  E3  . . .  En . . .

taki, że
⋃

n∈N
En = PR.

�

Uwaga. Do określenia „kręgosłupa” można użyć dowolnej funkcji G
o następujących własnościach:

G(0) ≥ 2 ∧ (∀t ∈ N) t < G(t) < G(t+ 1).

Wtedy klasy hierarchii Grzegorczyka mogą być zdefiniowane przy pomocy
ciągu funkcji {Gi}, który spełnia następujące warunki:

(i) G1(t) = G(t),

(ii) Gn(t) = Gtn−1(2). �

Powyższy wynik znacznie wyprzedził prace na temat złożoności obliczenio-
wej, por. Cook [1983].

Podczas gdy argument dotyczący wzrostu funkcji doprowadził do
twierdzenia 6, to nie jest oczywiste, czy klasy Ei definiują różne klasy
zbiorów liczb naturalnych. Powiadamy, że zbiór liczb naturalnych należy do
klasy E∗i , gdy jego funkcja charakterystyczna należy do zbioru Ei. Udowod-
niono, ze dla i ≥ 2 jest to dokładna hierarchia klas E∗i [Grzegorczyk, 1953].
Następujący problem: czy poniższe zawierania są ścisłe

E∗0  E∗1  E∗2?

pozostaje. od ponad 50 lat, jednym z trudniejszych wyzwań w teorii
funkcji rekurencyjnych. Uzyskano tylko częściowy postęp w rozwiązaniu
tego problemu: Bel’tyukov [1982] wykazał, że E∗1  E∗2 implikuje E∗0  E∗1.
Kutyłowski [1987b] udowodnił, że jeśli w definicji klas zastąpić ograni-
czoną rekursję prostą przez ograniczoną iterację to prowadzi to równości
dwu pierwszych klas tj. I0

∗ = I1
∗ . Ponadto wykazał, że podwójna rekursja

może być użyta do określenia hierarchii pomiędzy piętrami E∗0 i E∗2. Dal-
sze rezultaty tego rodzaju można znaleźć w pracy [Kutyłowski and Lo-
ryś, 1987].
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3. Wyniki powiązane z hierarchią Grzegorczyka

W tym rozdziale przytaczamy garść wyników odnoszących się do hierarchii
Grzegorczyka.

3.1. Złożoność programów
Informatycy dobrze znają i doceniają twierdzenie 6. Znaczenie tego wyniku
staje się bardziej widoczne w świetle prac R. W. Ritchie [1963], A. Mey-
era [1965] oraz Meyera i Ritchie [1967]. Jednym z pytań motywujących
A. Meyera i R. W. Ritchie [1967] było pytanie następujące: czy można spoj-
rzeć na program i oszacować ograniczenie górne jego czasu wykonania? Nie
ma sposobu (algorytmu) gwarantującego dobrą odpowiedź. Tym niemniej
dla pewnej klasy programów LOOP można taki przepis podać.

Niech V będzie zbiorem zmiennych. Zmienne będziemy oznaczać lite-
rami X,Y , Klasa LOOP programów jest najmniejszym zbiorem napisów
takim, że
1. napisy postaci X := 0, X := X + 1, i X := Y należą do zbioru LOOP,
2. jeśli napisy P,P ′ należą do zbioru LOOP to do tego zbioru należy też

napis P ;P ′,
3. jeśli napis P należy do zbioru LOOP to do tego zbioru należy też napis

postaci repeat X times P end.
Dla danego programu P i wartościowania v zmiennych, obliczeniem c nazy-
wamy taki ciąg par {〈vi, Pi〉}, że v0 = v, P0 = P , i

〈vi+1, Pi+1〉 =







〈v′, P ′〉 gdy Pi = X := 0;P ′ i v′(X) = 0
i v′(z) = vi(z) dla z 6= X

〈v′, P ′〉 gdy Pi = X := X + 1;P ′ i v′(X) = vi(x) + 1
i v′(z) = vi(z) dla z 6= X

〈v′, P ′〉 gdy Pi = X := Y ;P ′ i v′(X) = vi(y)
i v′(z) = vi(z) dla z 6= X

〈vi, R〉 gdy Pi = repeat X times Q end;P ′

i R = Q; . . . ;Q
︸ ︷︷ ︸

vi(X)razy

;P ′

Para 〈vi+1, ∅〉 jest ostatnim elementem takiego ciągu.

Fakt 7

Każde obliczenie jest skończone.
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Dla czytelników książek Grzegorczyka [1961] nie jest zaskoczeniem na-
stępujące

Twierdzenie 8

Każda funkcja pierwotnie rekurencyjna jest obliczana przez pewien pro-
gram P ∈ LOOP. �

W dalszym ciągu autorzy wprowadzają zbiory:
• Ln – zbiór programów w których konstrukcja powtarzaj jest zagnież-

dżona co najwyżej n razy,
• Ln – zbiór funkcji obliczanych przez program ze zbioru Ln.

i dowodzą, że

Twierdzenie 9

Ciąg zbiorów L0  L1  L2  . . . jest ściśle rosnący, tzn. stanowi hie-
rarchię w zbiorze funkcji pierwotnie rekurencyjnych. �

Jest to więc inna hierarchia, niż hierarchia Grzegorczyka. Łatwo za-
obserwować, że operacja powtarzaj jest blisko spokrewniona z operacją
minimum ograniczonego. Zobacz także rozdział na temat hierarchii Grze-
gorczyka w książce Brainerda i Landwebera [1974].

Uzyskano w ten sposób pewną odpowiedź na pytanie o koszt czasowy
programu z klasy LOOP. Koszt ten jest ograniczony przez liczbę zagnież-
dżonych operacji powtarzaj. Ograniczenie takie nie jest jednak precyzyjne.
Łatwo wskazać programy o sporej liczbie zagnieżdżeń operacji powtarzaj,
których czas wykonania jest mały lub wręcz stały. Niestety, nie istnieje
metoda znajdująca najmniejsze ograniczenie górne czasu wykonania danego
programu [Meyer and Ritchie, 1967].

Warto też wymienić wyniki M. Kutyłowskiego [1987a]. Autor przypo-
mina pojęcie uogólnionej hierarchii Grzegorczyka i omawia pewne problemy
wiążące się z klasami początkowymi w tej hierarchii. Ustala równości po-
między uogólnionymi klasami Grzegorczyka i pewnymi klasami złożoności
maszyn Turinga np. P oraz P*LINSPACE. Stosując narzędzia hierarchii
Grzegorczyka udowadnia twierdzenie o hierarchii dla klasy P*LINSPACE.
Dla lepszego opisu niższych klas złożoności wprowadza stosowe maszyny
Turinga.

S. Breidbart [1979] udowodnił taką ciekawostkę o języku programowania
APL: zbiór odpowiednio ograniczonych programów w jezyku APL (trady-
cyjnych 1-linerów) oblicza dokładnie zbiór funkcji z klasy E4. hierarchii
Grzegorczyka (jest to klasa bezpośrednio zawierająca klasę E3 funkcji ele-
mentarnie rekurencyjnych).
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3.2. Prezentacje hierarchii Grzegorczyka
Poza książką Brainerda i Landwebera [1974] wykład hierarchii Grzegor-
czyka można znaleźć w: Rose [1984], K. Wagner i G. Wechsung [2001],
Gakwaya [1997], i w znanej monografii Rogersa [1987]. Warto zapoznać się
z notatkami K. Kelly [Kelly, 2012] dla studentów.

3.3. Zastosowania hierarchii Grzegorczyka
Shelah [1988] wykorzystuje hierarchię Grzegorczyka by uzyskać lepsze osza-
cowanie kosztu obliczania liczb van Waerdena. Grozea [2004]2 odkrył, że
znane problemy NP zupełne np. SAT lub problem cykli Hamiltona znajdują
się w bardzo niskiej klasie E∗0.

3.4. Artykuły i książki na temat teorii rekursji
Spośród długiej listy prac i książek w których wspomina się lub objaśnia
hierarchię Grzegorczyka wspomnijmy kilka pozycji: Schwichtenberg [1997],
Wainer [1972], Axt [1963], Muchnick [1976], Cichon & Wainer [1983], Bel-
lantoni [2000], Mehlhorn [1974].

3.5. Rozszerzenia hierarchii Grzegorczyka
Istnieje kilka prac wprowadzających różne rozszerzenia hierarchii Grzegor-
czyka. Muchnick [1976] studiuje wektorowe hierarchie Grzegorczyka. Zobacz
także: Wainer i Cichon [1972], [1983], Weiermann [1995]. Kristiansen and
Barra [2005] definiują tzw. małe klasy Grzegorczyka dla rachunku lambda
z typami.

3.6. Obliczenia analogowe i obliczenia z liczbami rzeczywistymi
Wielu autorów podejmowało próby przeniesienia hierarchii Grzegorczyka
do modelu obliczeń analogowych lub do obliczeń z liczbami rzeczywistymi.
Pionierską pracą w tej dziedzinie była praca Grzegorczyka [1957]. W pracy
[Bournez and Hainry, 2004] zaprezentowano analogiczną i niezależną od
komputera algebraiczną charakteryzację funkcji elementarnie obliczalnych
w dziedzinie liczb rzeczywistych. Udowodniono, że jest to najmniejsza klasa
funkcji, która zawiera pewne funkcje bazowe i jest zamknięta ze względu na
operacje: złożenia, liniowego całkowania i schemat prostych granic. Wynik
ten uogólniono na wszystkie wyższe poziomy hierarchii Grzegorczyka. Mycka
i da Costa [Mycka and Costa, 2006] udowodnili nierozstrzygalność obliczeń

2 Wynik ten dotyczy równoległej hierarchii klas E
∗n zbiorów relacji arytmetycznych,

których funkcje charakterystyczne należą do odpowiednich klas E
n hierarchii Grzegor-

czyka.
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nad czasem ciągłym. Zobacz też prace [Campagnolo et al., 2002; Downey
and Hirschfeldt, 2008].

4. O innych logicznych wynikach Grzegorczyka

Informatyka, w wielu swoich badaniach posiłkuje się logika modalną lub
jej odmianami. Wyniki badań Grzegorczyka w dziedzinie logik modalnych
i logiki intuicjonistycznej zostały obszernie przedstawione w pracy Maksi-
mova [2007].

4.1. Reguła Grzegorczyka
W pracy na temat języka programowania obiektowego dla modelowania
systemów informacyjnych [Ornaghi et al., 2006] znajdujemy zastosowanie
następującej reguły Grzegorczyka.

Γ, [ G(p)]... π
or{C(p) B}

or{ for{τx | G(x) : C(x) }B}
Nie wiem jakie są początki tej reguły. Prawdopodobnie należy ich szukać

w pracach [Grzegorczyk, 1964b; 1964a]. Grzegorczyk rozważa w nich pewną
logikę pośrednią, która powstaje przez dodanie następującej formuły

∀x(P ∨Q(x)) ⇒ (P ∨ ∀xQ(x))

do aksjomatów Heytinga logiki intuicjonistycznej. S. Görnemann [1971]
nazywa tę formułę aksjomatem Grzegorczyka i dowodzi, że sformalizowana
wg Heytinga logika intuicjonistyczna wzmocniona tym aksjomatem pozwala
scharakteryzować klasę wszystkich struktur Kripkego o ustalonych dziedzi-
nach. Nazwa ta następnie przyjęła. Zobacz też interesującą pracę Rauszer
i Sabalskiego [1975].

4.2. Wyniki Grzegorczyka zastosowane w geoinformatyce
W r. 1951 Grzegorczyk opublikował wynik [Grzegorczyk, 1951] o nieroz-
strzygalności pewnych teorii topologicznych. Niedawno wynik ten był cy-
towany w dwu pracach:
• pracy na temat geoinformatyki [Cohn et al., 1997] i
• w pewnej pracy nt. reprezentacji wiedzy (ang. Knowledge Represen-

tation) i jej jakościowej prezentacji przestrzenno-czasowej [Wolter and
Zakharyaschev, 2002].
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5. Nierozstrzygalność bez arytmetyzacji

Parę lat temu Andrzej Grzegorczyk podjął się ambitnego zadania: udowod-
nić twierdzenie Gödla o nierozstrzygalności nie wykorzystując przy tym aryt-
metyzacji badanych teorii. Artykuł [Grzegorczyk, 2005] jest dość długi –
liczy prawie 70 stron, jest wynikiem cierpliwych i starannych prac. Zamiast
oprzeć, jak u Gödla, dowód na arytmetyce liczb naturalnych z dodawaniem
i mnożeniem, Grzegorczyk wykorzystuje teorię konkatenacji tekstów (inaczej
słów), [tablica 1] z jednym działaniem – dopisywania tekstu. Rozpatrywane
teksty zawierają tylko dwa znaki. (można je uznać za bity: zero i jeden –
chociaż w pracy przyjęto inne oznaczenia). Trudno o prostszą sytuację.

Tablica 1. Elementarna teoria konkatenacji

Sygnatura teorii

Zbiór U tekstów (można też mówić zbiór słów)
Działanie

∗ : U × U → U – operacja konkatenacji
oraz dwie stałe 0 oraz 1, 0, 1 ∈ U

Aksjomaty

x ∗ (y ∗ z) = (x ∗ y) ∗ z (A1)

x ∗ y = z ∗ u→ (A2)

((x = z ∧ y = u) ∨ (∃w)((x ∗ w = z ∧ w ∗ u = y) ∨ (z ∗ w = x ∧w ∗ y = u)))

¬(0 = x ∗ y) (A3)

¬(1 = x ∗ y) (A4)

¬(0 = 1) (A5)

Okazuje się, że podejście takie znacznie ułatwi śledzenie dowodu nierozstrzy-
galności teorii konkatenacji. Napotykamy jednak pewną trudność. Na
czym polega obliczalność w takiej teorii? Autor proponuje zastąpić relację
obliczalności przez relacje elementarnej i ogólnej odróżnialności tekstów.
Indukcyjna definicja elementarnej odróżnialności ED brzmi całkiem natu-
ralnie, zobacz [tablicę 2]. Do klasy ED należą relacja identyczności, trój-
argumentowa relacja tekst z jest wynikiem dopisania tekstu y za tekstem x,
oraz teksty atomowe 0 i 1. Klasa ED jest domknięta ze względu na opera-
cje: dodawanie nowego argumentu (bez ograniczeń na jego wartość), identy-
fikowanie pierwszego i drugiego argumentu, zamiana miejscami sąsiednich
argumentów, alternatywa i negacja, kwantyfikacja ograniczona do podsłów.
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Po czym następuje definicja ogólnej odróżnialności GD, zobacz [tablicę 3].
Klasa relacji ogólnie odróżnialnych jest domknięta ze względu na operację
dualnej kwantyfikacji.

W definicji operatora dualnej kwantyfikacji w pomysłowy sposób wyko-
rzystano twierdzenie Posta i zaprzęgnięto je do pracy.

Przy tak skromnym aparacie Grzegorczyk dowodzi kluczowe twierdzenie
o reprezentowalności.

Tablica 2. Elementarna odróżnialność ED

Warunki początkowe: do klasy relacji elementarnie odróżnialnych należą
1. {t : t = 0} ∈ ED

{t : t = 1} ∈ ED
2. {〈t, y〉 : t = y} ∈ ED
3. {〈t, y, z〉 : t = y ∗ z} ∈ ED
Definicja indukcyjna: klasa ED jest domknięta ze względu na następu-
jące operacje logiczne:
a. Jeśli R ∈ ED to {〈y, t1, . . . , tn〉 : R(t1, . . . , tn)} ∈ ED,
b. Jeśli R ∈ ED to {〈t1, t3, . . . , tn〉 : R(t1, t1, t3 . . . , tn)} ∈ ED,
c. Jeśli R ∈ ED to {〈t1, . . . , tn〉 : R(t1, . . . , tk+1, tk, . . . , tn)} ∈ ED,
d. Jeśli R ∈ ED to {〈t1, . . . , tn〉 : nonR(t1, . . . , tn)} ∈ ED,

Jeśli R ∈ ED i S ∈ ED to
{〈t1, . . . , tn, tn+1, . . . , tn+k〉 :

R(t1, . . . , tn) oraz S(tn+1, . . . , tn+k)} ∈ ED,
e. Jeśli R ∈ ED i gdy dla dowolnych y, t2, . . . , tn : S(y, t2, . . . , tn) ≡

∀t1(t1 6 y → R(t1, t2, . . . , tn)) to S ∈ ED.

Znak 6 oznacza relację bycia podsłowem, t1 6 y czytamy: słowo t1 jest podsłowem
słowa y.

Twierdzenie 10

Jeśli T jest niesprzeczną teorią zawierającą teorię konkatenacji, to dla
każdej ogólnie odróżnialnej relacji R ∈ GD istnieje formuła α, która
reprezentuje relację R w teorii T. �

Po udowodnieniu, że pewne syntaktyczne pojęcia (np. zbiór formuł,
zbiór zmiennych, ciąg formuł, należenie formuły do danego ciągu, etc.)
odnoszące się do teorii T są relacjami ogólnie odróżnialnymi, autor przepro-
wadza przekątniowy dowód nierozstrzygalności teorii T.
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Twierdzenie 11

Jeśli T jest teorią niesprzeczną i zawiera teorię konkatenacji, to jest T
teorią nierozstrzygalną. �

Wynik ten ma oczywiste walory dydaktyczne – jest łatwiej dostępny
czytelnikom, którzy np. nie słyszeli o chińskim twierdzeniu o resztach.
Co ważniejsze, wynik ten został uzyskany przy słabszych założeniach.
Teoria konkatenacji tekstów jest słabsza od arytmetyki liczb naturalnych
z dodawaniem i mnożeniem. Można co prawda w tej teorii zdefiniować
liczby naturalne i odpowiednik operacji dodawania, można też zdefiniować
trójargumentową relację x = y ∗ z, ale nie wydaje się by można było zdefi-
niować operację mnożenia liczb naturalnych.

Tablica 3. Ogólna odróżnialność GD

Warunki początkowe: te same jak w definicji elementarnej odróżnial-
ności.

Definicja indukcyjna: klasa GD jest domknięta ze względu na operacje
logiczne a.–e. z definicji elementarnej odróżnialności, a także ze względu na
operację dualnej kwantyfikacji:
Pewna relacja R jest ogólnie odróżnialna, R ∈ GD, gdy istnieją dwie relacje
T i S takie, że S, T ∈ GD i gdy dla dla dowolnych t1, . . . , tn mają miejsce
następujące dwa fakty:

R(t1, . . . , tn) wttw gdy istnieje tn+1 takie. że S(t1, . . . , tn, tn+1)

R(t1, . . . , tn) wttw gdy dla każdego tn+1 T (t1, . . . , tn, tn+1)

Zwróćmy też, uwagę na to, że teoria konkatenacji tekstów obywa się bez
schematu indukcji.

6. Najnowsze pasje Andrzeja Grzegorczyka

Znaleźć takie sformułowanie podstaw logiki, które jest wolne od paradoksów
formalnej implikacji. Jeden ze znanych paradoksów stwierdza: spośród
trzech dowolnych zdań, dwa zdania są równoważne; rzeczywiście następująca
formuła (p ≡ q) ∨ (p ≡ r) ∨ (q ≡ r) jest tautologią. Ten i inne paradoksy
wynikają z dwuwartościowości przyjetej przez nas semantyki.

Andrzej Grzegorczyk proponuje by na nowo scharakteryzować imp-
likację i równoważność, a dokładniej nową, inną implikację i inną relację
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równego znaczenia ∼=. Powiada on: naszym celem jest opisanie relacji
równego znaczenia przez przyjęcie odpowiednio dobranych aksjomatów.

Grzegorczyk zaproponował układ kilkunastu aksjomatów. Jego współ-
pracownicy zbierają się i dyskutują z nim dobór aksjomatów, ich niesprzecz-
ność, pełność i rozstrzygalność nowej teorii. Wyniki powinny zostać niedługo
opublikowane.

7. Statystyki

Trudno oszacować jak często prace Grzegorczyka były cytowane w pra-
cach informatycznych. Wyszukiwarka Google Scholar na pytanie “Grzegor-
czyk hierarchy” znajduje ponad 1000 odpowiedzi. Jeśli odrzucimy pozycje
mniej istotne to i tak pozostaje ponad 400 cytowań, rozszerzeń, zastosowań
i prezentacji prac Andrzeja Grzegorczyka.

Podziękowania. Andrzej Skowron, Pawe l Urzyczyn, Marian Srebrny,
Grażyna Mirkowska, Damian Niwiński, Miros law Kuty lowski, Konrad Zda-
nowski i Jurek Tomasik zechcą przyjąć podziękowania za ich sugestie i ko-
mentarze. Za wszystkie błędy i usterki odpowiada autor, który ma nadzieję,
że bogata twórczość profesora Andrzeja Grzegorczyka doczeka się głębszych
niż niniejsze opracowań.

Nasz nauczyciel wciąż pracuje, zobacz rozdział 6.
Wielu nowych wyników życzę Panu, Panie Profesorze.
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PHILOSOPHICAL INSIGHTS:
A CASE OF INTENTIONALITY

Abstract. Philosophical intuition may be used as a shortcut for establishing
what ordinary people would say or do in certain circumstances. In such use it
may be and should be replaced by proper empirical tests. This part of philoso-
phy, in which such information is essential to arguments, should be experimental
philosophy.
However philosophical intuition may be – and has been – understood differently.
Namely it can be regarded as a principled, thorough, dispassionate, unbiased
analysis of the fundamental traits of human cognition in the first person per-
spective. While science arises from a critical and systematic attitude towards
the third person aspect of common sense, philosophical insights result from
adopting such an attitude towards the first person aspect of common sense.
Such insights are quite rare; but if they are sufficiently deep, they can ‘re-
flect some fundamental features of our thought about the world’ (Strawson).
Among instances of a philosophical inquiry aiming at formulating such insights
we may count Strawson’s descriptive ontology and – for another instance –
Husserl’s theory of intentionality. I have enumerated several observations made
by Husserl on this and, by that example, have highlighted three important as-
pects of deep philosophical insights. One, despite their first person perspective,
they are not idiosyncratic: other thinkers, even from very different traditions,
arrive at very similar insights. Two, they are not dim and vague: they can be
expressed precisely, even in the shape of formal calculus. Three, they are not
a priori. They may be misguided, but their shortcomings are traceable and cor-
rectible. In particular, I show how one could think about correcting some flaws in
Husserl’s account of intentionality and proceeding to a new, rather naturalistic
theory of it.

One of the sources of the problem with philosophical insights and the
rise of experimental philosophy is the serious devaluation of the role played
by intuition in philosophical arguments. Increasingly, intuition has been
treated as a short cut to common knowledge, a cheap replacement for tire-
some and expensive tests. A vivid example of such treatment can be found in
the debate around contextualism in epistemology. Most participants in the
debate (notably [DeRose, 1992]) would argue that normally people would
say this or that in such-and-such situation and therefore this theory is bet-
ter than that theory because the former predicts the data and the latter
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does not. The explanatory scheme is virtually identical with that typical in
empirical sciences. Now, when we realize that intuition is a very inaccurate
replacement of proper tests – and everyone is bound to realize that, once
the idea of asking his or her students crosses his or her mind – the move to
experimental philosophy is the only reasonable option, unless philosophers
would rephrase their arguments in order to show that the appeal to com-
mon knowledge in the original version was inessential. Something like this
happened to Kripke’s arguments against descriptivism. They were formu-
lated with reference to the beliefs about ‘what people would say’ and were
challenged [Machery et al., 2004] on the grounds that these beliefs were em-
pirically inaccurate. Then Michael Devitt [2011] set out to show that these
beliefs were inessential to the arguments. In other cases – where the appeal
to common knowledge proved to be essential – intuition would be replaced
by actual empirical tests. That is happening now in the contextualism de-
bate (cf., for example, [Hansen and Chemla, forthcoming]).

But there is another use of intuition. It was employed, for instance, by
Peter F. Strawson who, in his search for an explanation for the subject-
predicate duality, assumed that the duality should

reflect some fundamental features of our thought about the world [Strawson,
1974, 11].

His renowned, ‘descriptive’ ontology from the first part of Individuals de-
scribes precisely the fundamental features not of this world but of our think-
ing about the world:

we are dealing here with something that conditions our whole way of talking
and thinking, and it is for this reason that we feel it to be non-contingent
[Strawson, 1959, 29].

We might try for the first approximation the following formulation:
Philosophical intuition in its proper understanding is a principled, thor-
ough, dispassionate, unbiased analysis of the fundamental traits of human
cognition in the first person perspective. In this sense it is prior to any sci-
entific enquiry and cannot be replaced by such. Priority does not mean
independence. There is mutual dependence between philosophical insights
and science. In one way, when we think about the world we are conscious
of what science tells us about the world and about human ways of thinking
(from the third person perspective); the more we know about it, the more
such knowledge conditions our first person way of thinking. That is why
philosophy can and should take all relevant scientific facts into considera-
tion (so to speak: we shall naturalize as much as we can) and yet retain its
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specificity. Conversely, it is the first person perspective that ultimately sets
the agenda for science. Science can be explanatory only on condition that
it answers some interesting questions. What questions are interesting, what
kinds of answers are satisfactory, why this or that enables us to understand
the issue and what the issue is – these problems require some input from
the first person perspective.1

The first person perspective alone does not yet yield philosophy. The
first instance of such a perspective is just common sense or, perhaps better
put, common sense is an uncontrolled mixture of a first person and a third
person perspective. Indeed, common sense is sufficient to do much of the job
of the first person perspective, notably to run science. We can live without
philosophy, but some of us feel the need to control the first person perspec-
tive and gain deeper understanding of the foundations of our cognition in
this perspective.

Philosophy answers that need. It is like implementing the spirit of the
scientific method within the first person perspective. Analogously, just as
science develops from a critical and systematic attitude towards a third per-
son aspect of common sense knowledge of the world, so philosophy develops
from such an attitude towards the first person aspect of common sense (ef-
fectively it might be as remote from common-sense as Quantum Mechanics
from common sense physics). Philosophical insight is intersubjectively com-
municable to those who are able to develop a similarly critical and system-
atic attitude and may be discussed, challenged and changed – assuming that
people share their cognitive foundations (not common sense ‘intuitions’ !).
This is just as it is in science, where the outcomes are communicable to
those who share the relevant background and may be discussed, challenged
and changed – assuming that the object of inquiry does not change when
different researchers take a look at it.

A good example of what kind of enquiry I have in mind is Strawson’s
descriptive metaphysics, already mentioned above. But an even better ex-
ample is Edmund Husserl’s work in the theory of intentionality in Logical
Investigations [2001].

Husserl has not been well remembered in the analytic tradition be-
cause of his late phenomenological project. The project highlighted the aim
of making philosophy an assumptionless, apriorical royal road to absolute
certainty, which should be rightly placed next to sheer fantasy. However,
a struggle for certainty is only part of the story. Phenomenology, espe-

1 I will skip the topic of metaphysical assumptions in science although it is not entirely
irrelevant here.
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cially early phenomenology, has another component: a method of detailed,
methodical, principled observation and categorization of the subject’s own
inner states accompanied by a struggle for the detection and reduction of
one’s biases and personal idiosyncracies. This part of phenomenology is
highly respectable and it has in fact contributed much to the rise of ana-
lytic philosophy.2

Let us take a closer look in order to see how it works in detail.
Intentionality is rightly believed to be one of the fundamental features

of our thinking and talking. I claim that the method of ‘pure description’, as
he would call it, enabled Husserl to discover many subtle facts about human
linguistic competence that the sciences (such as psychology or linguistics)
were not – and still are not – properly able to describe and explain. Firstly,
he started with the observation that expressions have meanings because
they are founded in intentional acts whereby they appear to be directed at
something:

The concrete phenomenon of the sense-informed expression breaks up, on the
one hand, into the physical phenomenon forming the physical side of the ex-
pression, and, on the other hand, into the acts which give it meaning [...]
In virtue of such acts, the expression is more than merely sounded word. It
means something, and in so far as it means something, it relates to what is
objective [Husserl, 2001, vol. 1; 191–192].

Secondly, an intentional act, hence an expression, can be directed at
nothing. Expressions must appear to be directed at something, but not
necessarily be so directed. Husserl lays great emphasis on this (in opposition
to his predecessors, notably Brentano and Twardowski):

Relation to an actually given objective correlate, which fulfills the meaning-
intention, is not essential to an expression [Husserl, 2001, Vol. 1; 199].

If I have an idea of the god Jupiter, [...] this means that I have a certain
presentative experience, the presentation-of-the-god-Jupiter is realized in my
consciousness. This intentional experience may be dismembered as one chooses
in descriptive analysis, but the god Jupiter naturally will not be found in it.
The ‘immanent’, ‘mental object’ is not therefore part of the descriptive or real
make-up of experience, it is in truth not really immanent or mental. But it
also does not exist extramentally, it does not exist at all. This does not prevent

2 The boiling pot of ideas from which analytic philosophy erupted was heated mainly
by the exchange between Husserl, Twardowski and Frege, which is rightly noted in [Dum-
mett, 1993]. All three of them, Frege notwithstanding, were in this sense phenomenol-
ogists. Frege’s ideas of distinguishing sense and reference or saturated and unsaturated
expressions are products of the same method.
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our-idea-of-the-god-Jupiter from being actual, a particular sort of experience
or particular mode of mindedness (Zumutesein), such that he who experiences
it may rightly say that the mythical king of the gods is present to him, con-
cerning whom there are such and such stories. If, however, the intended object
exists, nothing becomes phenomenologically different. It makes no essential
difference to an object presented and given to consciousness whether it exists,
or is fictitious, or is perhaps completely absurd. I think of Jupiter as I think
of Bismarck, of the tower of Babel as I think of Cologne Cathedral, of a regu-
lar thousand-sided polygon as of regular thousand-faced solid [Husserl, 2001,
Vol. 2; 98–99].

Thirdly, intentionality assumes two forms. In other words, there are two
kinds of intentional acts: nominal acts and propositional acts. In language,
they correspond to names and sentences (which can therefore justly be called
primary semantic categories). It is not enough to say that our thinking or
its verbal expression is intentional or directed at something, for our thinking
and its verbal expression can be directed at it in two different ways.

Nominal acts and complete judgements never can have the same intentional
essence, and [...] every switch from one function to the other, though pre-
serving communities, necessarily works changes in this essence [Husserl, 2001,
Vol. 2; 152].

Naming and asserting do not merely differ grammatically, but ‘in essence’,
which means that the acts which confer or fulfil meaning for each, differ in
intentional essence, and therefore in act-species [Husserl, 2001, Vol. 2; 158].

Fourthly, the distinction between nominal and propositional intentional acts
(a basis for distinguishing the syntactic roles of names and sentences) crosses
with the distinction between positing and non-positing acts:

Among nominal acts we distinguish positing from non-positing acts. The for-
mer were after a fashion existence-meanings [...] refer to [an object] as existent.
The other acts leave the existence of their object unsettled: the object may,
objectively considered, exist, but it is not referred to as existent in them, it
does not count as actual, but rather ‘merely presented’. [...] We find exactly the
same modification in the case of judgments. Each judgment has its modified
form, an act which merely presents what the judgment takes to be true [...]
without a decision as to truth and falsity [...]. Judgments as positing proposi-
tional acts have therefore their merely presentative correlates in non-positing
propositional acts [Husserl, 2001, Vol. 2; 159–160].

The difference between those two distinctions is clear, but the matter re-
quires close scrutiny because, due to obscure terminology, the distinctions
may be confused. In particular, the concept of proposition (judgment) in

191



Mieszko Tałasiewicz

the light of these distinctions is ambiguous. It could be understood broadly
as a correlate of any propositional act, assertive or non-assertive, or under-
stood narrowly, as a correlate of a positing propositional act (assertion).
Some readers may also, wrongly, take it for a correlate of any positing act
(propositional and nominal as well):

To call all positing acts ‘judgments’ tends to obscure the essential distinc-
tion [...] between nominal and propositional acts, and so to confuse an array
of important relationships [Husserl, 2001, Vol. 2; 166].

Fifthly, Husserl further distinguished independent from non-independent
expressions, as well as complete from incomplete. Complete expression is
a kind of expression which is syntactically coherent, with a unitary meaning,
for example, ‘a cat’, ‘The cat sits on the mat’, or ‘quite well’. Incomplete
expression is an expression which lacks this internal syntactic coherence: ‘the
on cat quite’. Independent expressions are, for example, ‘a horse’, ‘I’ve seen
a ghost’, ‘a green cow’, while non-independent expressions are, for example,
‘good’ or ‘quite well’ – they are functors which have unitary but unsaturated
meanings and therefore require objects:

Several non-independent meanings [...] can be [...] associated in relatively
closed units, which yet manifest, as wholes, a character of non-independence.
This fact of complex non-independent meanings is grammatically registered in
the relatively closed unity of complex syncategorematic expressions. Each of
these is a single expression, because expressive of a single meaning, and it is
a complex expression, because expressive part by part of a complex meaning.
It is in relation to this meaning that it is a complete expression. If nonetheless
we call it incomplete, this depends on the fact that its meaning, despite its
unity, is in need of completion. Since it can only exist in a wider semantic
context, its linguistic expression likewise points to a wider linguistic context,
to a completion in speech that shall be independent and closed [Husserl, 2001,
Vol. 2; 57].

Let us stop the illustration here. Three points are particularly apt to be
made.

One is that the observations made by Husserl are by no means idiosyn-
cratic to him. On the contrary, we can spot very similar insights in the works
of other philosophers, especially those who acknowledged the descriptive
method we are talking about.

For instance, the crossed distinctions of nominal/propositional and
positing/non-positing acts, mentioned above, were referred to independently
by Strawson and Peter T. Geach. Strawson wrote [1950, 11]:
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[R]eferring to or mentioning a particular thing cannot be dissolved into any
kind of assertion. To refer is not to assert, though you refer in order to go on
to assert.

How close the approach gets to Husserl’s observations is not entirely clear,
because Strawson’s statement can be taken as an acknowledgment of the
distinction between nominal and propositional acts, but maybe it is only
a way of drawing our attention to the distinction between positing and non-
positing acts. Less ambiguous is a passage found in Geach [1980, section 20,
p. 52]:

A name may be used outside the context of a sentence simply to call something
by name – to acknowledge the presence of the thing. This act of naming is of
course no proposition [...]. It does, however [...], express a complete thought.

Geach here distinguishes naming acts as different from propositional acts
although expressing complete thoughts as well as propositional acts do. In
this passage he confines himself to positing acts only, but elsewhere in his
book [1980, section 19] he further distinguishes propositions from assertions,
which leads us to believe, with reason, that Geach, like Husserl, held both
distinctions separate and considered them to be independent.

For another instance let us take the crossed distinctions of complete/in-
complete and independent/non-independent sentences. Pace terminology,
one can easily see that Husserl’s non-independent expressions correspond
quite well to Frege’s incomplete or unsaturated ones: they exhibit a cer-
tain unitary quality of meaning, but they need to be completed in order to
acquire independent meaning.3 Husserl’s incomplete expressions, or those
‘containing gaps’ are not Frege’s incomplete, or unsaturated expressions;
they are simply incoherent fragments, with no ‘unitary meaning’ whatso-
ever; they have more to do with ellipsis or with plain syntactical incoherence.

The second point is that insights like these are not loose ideas without
any relevance to more rigorous accounts of language. On the contrary, they
are expressible in a precise way and can be considered as postulates ready to
use even in formal systems. These particular insights we have just discussed
constitute the foundations of Categorial Grammar.4 It shows that deep,
careful reflection upon one’s own way of thinking and talking may lead

3 For not all the parts of a thought can be complete; at least one must be ‘unsaturated’,
or predicative; otherwise they would not hold together [Frege, 1892, 54].

Statements in general [...] can be imagined to be split up into two parts; one complete
in itself, and the other in need of supplementation, or ‘unsaturated’ [Frege, 1891, 31].
4 Categorial Grammar is a highly sophisticated formal account of syntax, initiated by

Kazimierz Ajdukiewicz [1935], and developed by, among others, Y. Bar Hillel, J. Lambek,
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to a discovery of ideas that are shared by other distinguished thinkers in
the field and the possibility of forming a framework for a universal, highly
formalized syntactic theory.

The third point is that first person insights are not only shared by
other thinkers, and not only expressible in a calculus, but also open to fur-
ther development. Being the results of a scientific-like attitude they are not
a priori: internal experience is experience, thought experiments are exper-
iments. Philosophical insights resulting from them are a posteriori: they
may be misguided in this or that, but their shortcomings are traceable and
correctible.5

Also in Husserl’s account we may find thoughts that are not thought
thoroughly enough. Some problems can be spotted within Categorial Gram-
mar, when internal difficulties with the calculus seem to reach the philo-
sophical ground. I believe that this is the case with the syntax of quantified
phrases: so far no treatment of quantification has proved entirely satisfactory
in CG. But some other problems can be shown directly, from the common-
sense level.

Two such charges against Husserl’s account are presented by Dum-
mett [1993].

One is that Husserl’s account of the intentionality of language puts him
at risk of slipping into a Humpty-Dumpty-like attitude towards meaning.
Humpty-Dumpty, talking to Alice in Through the Looking-Glass, maintains
that she cannot know the meaning of a word he has used (‘glory’) until he
communicates his intentions in the matter. Acceptance of such attitudes
is rightly believed to be absurd – if it were the case, any intersubjective
communication would be impossible. Yet it seems that Husserl’s insight, ac-
cording to which meaning is founded in an intentional act of a subject, leads
precisely to such an attitude. Another charge, akin to the former, is that in
Husserl’s account it is hard to imagine how language acquisition could be
a social practice (which it certainly is). Husserl sounds very individualistic
in that respect.

However, we can remedy that. We can try to establish and analyse
further what has been left without proper treatment. I have done this in

P. T. Geach, M. Cresswell, D. Lewis, J. van Benthem, and W. Buszkowski. It is now one
of the most powerful tools for analysing natural language. For a presentation of a full-
blown version see, for example, [Carpenter, 1997] or [Steedman, 2000]. For a discussion of
the relation between the calculus and its philosophical background see [Tałasiewicz, 2009;
2010; 2012a].
5 This point shows in the clearest way that the insights I am talking about here are

of a different sort than the ‘conceptual analysis’ advocated by Kirk Ludwig [2007], which
is declared to be a priori.
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greater detail elsewhere [Tałasiewicz, 2012b], but some recapitulation seems
appropriate here.

The problem with Husserl’s insight that is responsible for the troubles
raised by Dummett is that Husserl has not properly distinguished the per-
spective of the subject as a speaker (encoder) and as a hearer (recipient).
He was talking generally about a ‘subject’ and ‘subject acts’ in ‘solitary life’
[Husserl, 2001, Vol. 1; 190], and this distinction was not clear: the subject
in a sense is both the speaker and the hearer. Now, when this distinction
is uncontrolled, we are apt to assume automatically that intentionality is
founded in the acts of the speaker. And that is the mistake, in consequence
of which we slip into the Humpty-Dumpty attitude.

Upon reflection we might choose to go the other way and deliberately
adopt the hearer’s perspective.6

That solves the problem: now meaning is formed in the acts of the
recipient, when he or she perceives the expression as directed at something.
The quality of this perception may be induced by those from whom the
recipient is learning the language in the social practice of using language.
Humpty-Dumpty imparts meaning to the word ‘glory’ not when he wants to
subject Alice to ‘a nice knock-down argument’ but when he himself learns
the word for the first time, and this meaning is (roughly) the same as Alice’s.

Now, we might compare the outcome of our reflection in the first per-

6 Husserl himself, contrary to what Dummett says, was far from being obviously
encoder-oriented. In many places the description of an intentional act essentially takes
the receiver’s perspective:

What is involved in the descriptive difference between the physical sign-phenomenon
and the meaning-intention which makes it into an expression, becomes most clear
when we turn our attention to the sign qua sign, e.g. to the printed word as such.
If we do this, we have an external percept [...] just like any other, whose object loses
its verbal character. If this object again functions as a word, its presentation is
wholly altered in character [...]. Our interest, our intention, our thought [...] point
exclusively to the thing meant in the sense-giving act [...]. [I]ntuitive presentation,
in which the physical appearance of the word⋆ is constituted, undergoes an essential
phenomenal modification when its object begins to count as an expression. While
what constitutes the object’s appearing remains unchanged, the intentional charac-
ter of the experience alters. There is constituted [...] an act of meaning which finds
support in the verbal presentation’s intuitive content, but which differs in essence
from the intuitive intention directed upon the word itself [Husserl, 2001, Vol. 1; 193–
194].
All objects and relations among objects only are what they are for us, through acts of
thought essentially different from them, in which they become present to us, in which
they stand before us as unitary items that we mean [Husserl, 2001, Vol. 1; 194].
The meaning of the assertion [...][–] we continue to recognize its identity of intention
in evident acts of reflection: we do not arbitrarily attribute it to our assertions, but
discover it in them [Husserl, 2001, Vol. 1; 321 – note 5 to page 213].
The soliloquizing thinker ‘understands’ his words, and this understanding is simply
his act of meaning them [Husserl, 2001, Vol. 1: 321 – note 5 to page 213].
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son perspective7 to some third person scientific research, devoted to the
problems of language acquisition; luckily we now have some interesting and
relevant findings at hand. For instance, psycholinguists point out that funda-
mental for the learning of the first language is the child’s ability to interpret
another person’s physical features as directional:

Joint Attention Comes First [...] In a successful conversation, the two partic-
ipants must agree on what is being talked about. One way to ensure this is
to start with the same locus of attention. But how does one make a one- or
two-year-old systematically attend to what one is saying? [...] [B]y age one,
infants have become quite good themselves at checking on the adult’s gaze,
stance, and physical orientation [Clark, 2003, 32].

This in turn may lead us – by the mechanism mentioned before, that our
(scientific) knowledge about the world conditions our first person perspec-
tive – to again make a first person observation that perhaps intentionality of
thinking and talking is not a primary form of intentionality; that intention-
ality in the first place, prior to language and articulated thoughts, is a prop-
erty of some physical objects, whose shape and orientation induce upon us
the impression of directedness. And that concerns not only early stages of
natural language, or just natural language, because, as Grzegorczyk con-
vincingly argued over a half of a century ago, not only in natural language,
but also in the language of science, ‘the meaning of the name is ultimately
fixed in situations involving pointing’ [Grzegorczyk, 1950–1951, 307] and
‘the expression “I am now pointing to ...” [...] is the primitive formula of
the descriptive language [of physics]’ (ibidem: 311).

Thus we arrive at a quite unexpected insight:

Intentionality is a relative quality of certain perceived objects, in particular
arrows and sticks, but also other people’s gestures and glances, which exhibits
itself in a relationship with a certain ability of the subject perceiving those
objects. The result is that the subject perceives those objects as being directed
towards something [Tałasiewicz, 2012b, 515].

According to this insight, intentionality is expressed in a simple, naturalis-
tic way, and is similar to such relative qualities as colours.8 Intentionality

7 The talk of Humpty-Dumpty and Alice, grammatically in the third person, should
not cover from us the fact that epistemologically we are all the time in the first person
perspective: we know what H-D or Alice would say or do because we ourselves play their
role in the analysis.
8 Compare J. J. C. Smart’s definition of the latter: ‘Colors [are] dispositions of physical

objects to evoke characteristic patterns of discriminatory color behavior by normal human
percipients in normal circumstances’ [Smart, 1997, 1].
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is no longer a relation between the mind and what the mind is directed at
– contrary to the standard post-Brentanian account. It is rather a relation
between a physical object of a certain kind and the subject who perceives
this object as being directed. Human ability to perceive such things as in-
tentional becomes a natural, congenital trait, and it is quite easy to imagine
evolutionary advantages that hominids possessing such a trait would have
over those lacking this ability.9
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Kazimierz Trzęsicki

CHARACTERIZATION OF CLASSES OF FRAMES
IN MODAL LANGUAGE

Abstract. In the paper some facts about the definability of classes of Kripke
frames for tense logic are discussed. Special attention is given to the classes of
frames definable by Grzegorczyk’s Axiom:

�(�(φ→ �φ) → φ) → φ

as interpreted in temporal logic.

1. Temporal logic

Let us consider Kripke1 (relational) semantics 〈T,<〉, where T is a non-
empty set (of time points) and < is a binary relation on T , <⊆ T × T (the
precedence relation – earlier/later). The flow of time T is represented as
〈T,<〉. If a pair of elements (t, t1) belongs to < we say that t is earlier than
t1, or: t1 is later than t.

{t : n < t} is the future of n. The past of n is defined likewise: {t : n > t}.
Models of temporal logic TL are triples 〈T,<, V 〉 consisting of a frame

〈T,<〉, the flow of time T, together with a valuation V , where V is a function
assigning each propositional letter a subset of T : V → 2T . Intuitively, V to
a propositional letter assigns a set of moments of time in that the letter is
satisfied (true).

Besides classical propositional connectives (¬,∨,∧,→,↔) we will have
temporal operators that are defined on 〈W,<〉.

1 The question who invented relational semantics is a subject of discussion. Disputed
is the role of Alfred Tarski [Goldblatt, 2005, p. 17]. There are some reasons to point to
Leibniz as its inventor. For Leibniz the actual world is the one of the best of all possible
worlds. He maintains that [Goldblatt, 2005, p. 18]:

Not only will they hold as long as the world exists, but also they would have held if
God had created the world according to a different plan.

An answer to the question who invented relational models is given by Saul Kripke [Gold-
blatt, 2005, p. 22].
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To each operator defined with the help of < there is a symmetric-to-it
operator defined with the help of the converse (inverse, transpose) relation
of <, i.e. with the help of >. Temporal logic (TL) uses this possibility,
distinguishing past tense and future tense operators.

Vocabulary

1. p0, p1, . . . – propositional letters, Prop;
2. ¬,∨,∧,→,↔ – propositional connectives: negation, disjunction, con-

junction, implication, equivalence, respectively;
3. G,F,H,P – tense operators:

• G – it will always be the case that φ, or: henceforth, φ;
• F – it will be the case that φ, or: φ is true at some time in the

future;
• H – it has always been the case that φ, or: hitherto, φ;
• P – it has been the case that φ, or: φ was true at some time in the

past.
Tense logic is the study of tense operators, and of the logical relations

between sentences having tense. The study of this logic has been initiated
and developed by Arthur Norman Prior, e.g. [1957; 1962; 1967; 1968].

Definition 1 (well formed formula)

φ ::= pi, i ∈ N| ¬φ| φ ∨ φ| φ ∧ φ| φ→ φ| φ↔ φ

We will also frequently refer to the mirror image of a formula; this is
simply the formula one obtains by simultaneously replacing all Hs and P s
with Gs and F s, respectively, and vice versa. The mirror image of a formula
φ will be denoted: MI(φ).

Definition 2 (the satisfiability of a formula at a point of time)

Let M be a model 〈T,<, V 〉 and let t ∈ T :

1. M, t |= φ iff t ∈ V (φ), if φ ∈ Prop;

2. M, t |= ¬φ iff M, t 6|= φ;

3. M, t |= φ ∨ ψ iff M, t |= φ or M, t |= ψ;

4. M, t |= φ ∧ ψ iff M, t |= φ and M, t |= ψ;

5. M, t |= φ→ ψ iff M, t 6|= φ or M, t |= ψ;

6. M, t |= φ↔ ψ iff M, t |= φ if and only if M, t |= ψ;

7. M, t |= Hφ iff ∀t1, t1 < t : M, t1 |= φ;

8. M, t |= Pφ iff ∃t1, t1 < t : M, t1 |= φ;
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9. M, t |= Gφ iff ∀t1, t < t1 : M, t1 |= φ;

10. M, t |= Fφ iff ∃t1, t < t1 : M, t1 |= φ;

Kamp [1968] introduced two operators U (until) and S (since), and he
showed that over the class of complete linear temporal orders, the formalism
is expressively complete [Gabbay, 1981a; Gabbay and Hodkinson, 1990].

11. M, t |= U(φ,ψ) iff ∃t1, t < t1 : M, t1 |= φ and ∀t2, t < t2 < t1 :
M, t2 |= ψ,

12. M, t |= S(φ,ψ) iff ∃t1, t1 < t : M, t1 |= φ and ∀t2, t1 < t2 < t :
M, t2 |= ψ,

The mirror image of φ, MI(φ), is obtained by simultaneously replacing
S by U and U by S, everywhere in φ, and other temporal operators according
to the former rule of forming of MI(φ).

Definition 3 (validity of a formula in a model)

〈T,<, V 〉 |= φ iff ∀t ∈ T : M, t |= φ.

Definition 4 (validity of a formula in a frame)

〈T,<〉 |= φ iff ∀V :→ 2T : 〈T,<, V 〉 |= φ.

Definition 5 (validity in a class of frames)

Let F be a class of frames. F |= φ if and only if for any T: if T ∈ F,
then T |= φ.

Less would do since actually all propositional truth functions can be
defined for instance in terms of ¬ and →; moreover P can be defined as
¬H¬ and F can be defined as ¬G¬. H and G can be defined with the help
of U and S: Hφ↔ S(⊥, φ), Gφ ↔ U(⊥, φ).

2. Definability of classes of frames

Definition 6

A formula φ characterizes a class of frames T if and only if

T |= φ iff T ∈ F.

Let Fφ denote the class of frames characterized by a formula φ.
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If a class of frames is characterized by a formula φ, or – in other words
– is definable by φ, we say that the formula expresses this class of frames.
Conditions C imposed on the relation <, <∈ C, are expressible by a formula
φ if and only if the class of frames 〈T,<〉, such that < fulfills the conditions
C, is characterized (definable) by the formula φ.

We ask what classes of frames are characterized by a formula (or set of
formulas) of TL.

Lemma 7

If 〈T,<〉 |= φ, then 〈T1, <1〉 |= φ, where T1 has exactly one element,
and < is empty or universal.

Proof.
By definition φ is satisfied for any valuation such that V (pi) = V (pj),

for any i, j ∈ N. We do not assume that if t1 < t2, then t1 6= t2, and
there is not such an assumption in definitions of temporal operators. Hence
〈T1, <1〉 |= φ, where T1 has exactly one element. In one element set {t}
there are definable only two binary relations: empty and universal, i.e. ∅
and {〈t, t〉}, respectively. �

Let us remark that the empty relation is irreflexive.

Theorem 8

Irreflexivity is not expressible in TL.2

Proof.
In the case of operators which are defined without any assumption about

the relation <, by the lemma 7, any formula that is satisfied in any frame
〈T,<〉 is also satisfied in a frame 〈T1, <1〉, where T is a one-element set
and <1 is either empty or universal. If <1 is universal, then < is reflexive.
Empty relations are irreflexive, but not all irreflexive relations are empty.

Let us consider a language whose some operators are defined by assum-
ing that if t < t1, then t 6= t1. In such a case if a formula with such an
operator is satisfied in a model 〈T,<, V 〉, then the formula is satisfied in
a model 〈T,≤, V 〉. Hence irreflexivity is not expressible. �

Irreflexivity is not the only property which is not expressible in TL.

2 Irreflexivity is expressible by Gabbay’s [1981b] Irreflexivity Rule, IRR:

q ∧H(¬q) → φ

φ
,

provided that the propositional letter q does not appear in the formula φ.
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We ask what class of frames is characterized by MI(φ) if φ characterizes
a class F.

Definition 9 (converse of a binary relation)

The converse of binary relation < is the relation > such that:

t < t1 iff t1 > t.

Let class of frames F̌ be such that:

if 〈T,<〉 ∈ F, then 〈T,>〉 ∈ F̌.

Let us note that ˇ̌
F = F.

Lemma 10

〈T,<, V 〉, t |= φ iff 〈T,>, V 〉, t |= MI(φ).

Proof.
The lemma is provable by the structural induction.
Let us consider only one case, namely of S(ψ,χ). By assumption we

have that for any V, t:

〈T,<, V 〉, t |= ψ iff 〈T,>, V 〉, t |= MI(ψ),

and

〈T,<, V 〉, t |= χ iff 〈T,>, V 〉, t |= MI(χ).

By definition of MI we have MI(S(ψ,χ) = U(MI(ψ),MI(χ)).

〈T,<, V 〉, t |= ψ |= S(ψ,χ) by definition of S is equivalent to:

∃t1, t1 < t : M, t1 |= ψ and ∀t2, t1 < t2 < t : M, t2 |= χ.

It is equivalent to:

∃t1, t1 > t : M, t1 |= MI(ψ) and ∀t2, t1 > t2 > t : M, t2 |= MI(χ).

It is equivalent to:

〈T, V >〉, t |= U(MI(ψ),MI(χ)),

and, finally:

〈T,<, V 〉, t |= S(ψ,χ) iff 〈T,>, V 〉, t |= MI(S(φ, χ).
�

By lemma 10 we have:
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Theorem 11

A formula φ characterizes a class of frames F if and only if the formula
MI(φ) characterizes F̌.

The formula:

Gp→ Fp

characterizes endless time (forward seriality), T∞+: ∀ t∃t1 : t < t1.
Time without a beginning (backwards seriality), T∞−: ∀ t∃t1 : t1 < t

is characterized by the formula:

Hp→ Pp.

F -LIN , linearity in the future (forward linearity): ∀t, t1, t2: if t < t1, t <

t2, then t1 < t2 or t1 = t2 or t2 < t1 is characterized by:

Fp→ G(Pp ∨ p ∨ Fp).
P -LIN , linearity in the past (backward linearity): ∀t, t1, t2: if t1 <

t, t2 < t, then t1 < t2 or t1 = t2 or t2 < t1, is characterized by:

Pp→ H(Pp ∨ p ∨ Fp).
Some relations are such that they are equal to its converse. If a relation

is reflexive, irreflexive, symmetric, antisymmetric, asymmetric, transitive,
total, trichotomous, a partial order, total order, strict weak order, total
preorder (weak order), or an equivalence relation, its inverse is, too.

The formula Gp → p characterizes a reflexive time. The converse of
reflexive relation is a reflexive relation. The formula Hp → p is inferable
from Gp→ p, and vice versa, i.e. in Kt, the system of minimal tense logic,
Gφ→ φ is mutually provable from Hφ→ φ:

1. ¬φ→ GP¬φ axiom of Kt
2. GP¬φ→ P¬φ assumption
3. ¬φ→ P¬φ Syll. (1,2)
4. ¬P¬φ→ ¬¬φ Trans., 3
5. Hφ→ φ by definition of H and double negation.

The proof in the other way is similar.
It has been shown that in Kt the formulas characterizing transitive

time:

FFp→ Fp

and

PPp→ Pp
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are mutually inferable (e.g. [McArthur, 1976, p. 26]). The same is true about
formulas characterizing dense time (e.g. [McArthur, 1976, pp. 31–32]):

Fp→ FFp

and

Pp→ PPp.

The empty relation and its converse are equal. Empty relation is char-
acterized by G(p∧¬p). Also this relation is characterized by H(p∧¬p), the
IM of the formula G(p∧¬p). Are these formulas mutually inferable in Kt?

Theorem 12

Kt ∪ {G(φ ∧ ¬φ} 6⊢ H(p ∧ ¬p).

Proof.
Let now:

• M, t |= Hφ iff ∀t1, t1 ≤ t : M, t1 |= φ;
• M, t |= Pφ iff ∃t1, t1 ≤ t : M, t1 |= φ;

Under this interpretation if the relation < is empty, all the theorems of
Kt∪{G(φ ∧ ¬φ} are valid, but H(p ∧ ¬p) is not satisfiable in any model.�

A binary relation < is symmetric if and only if:

if t < t1, then t1 < t.

The symmetry of < is expressible in TL (Brouwer axiom):

p→ GFp.

The symmetrical relation is equal to its converse. The IM(p → GFp) deriv-
able in Kt ∪ φ→ GFφ [McArthur, 1976, pp. 34–35].

Some classes of relations are not characterized by any formula, e.g. – as
it is stated in theorem 8 – the class of irreflexive times.3 In particular this
concerns so called negatively definable classes.4

The notion of definability is such that if φ characterizes a class of frames,
then φ is valid in any frame of this class. To distinguish this sort of defin-
ability, we call it positive characterization.

3 For general results about definability see [van Benthem, 2001].
4 Venema [1993] discusses a ‘negative’ way of defining frame classes in (multi)modal

logic. In a metatheorem on completeness he defined the conditions under which a deriva-
tion system is strongly sound and complete with respect to the class of frames determined
by its axioms and rules.
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Definition 13 (negatively definable class)

A formula φ negatively characterizes a class of frames F if and only if for
any 〈T,<〉 ∈ F for every t there is a valuation V such that 〈T,<〉, t |= ¬φ.

Let Fφ denote the class of frames positively characterized by φ and F−φ
denote the class of frames negatively definable by φ. It is an interesting
question about the relations between both two classes.

First of all let us remark that the classes Fφ and F−φ are disjoint.

Theorem 14

For any φ : Fφ ∩ F−φ = ∅.

We ask if both these classes are complementary, i.e. if for any φ : Fφ ∪
F−φ = F, where F is the class of all frames. The answer is negative: frames
characterized by Gp → Fp (endless times) are not complementary with
a class of frames definable negatively, i.e. the class of all frames such that
the relation < is empty. There are frames such that only some, but not all,
points do not have a successor.

Theorem 15

Let Fφ,F−φ be both non-empty. For any φ : Fφ ∪ F−φ 6= F.

Proof.
We have to show that for any φ there are frames T such that there

are moments such that for any valuation φ is satisfied and that there are
moments such that there are valuations such that φ is not satisfied. These
conditions are fulfilled by the following frame.

Let 〈T1, <1〉 be a frame positively definable by φ and let 〈T2, <2〉 be
a frame negatively definable by φ. The frame is such that:
• T = T1 × {1} ∪ T2 × {2} and
• <=<∗

1 ∪ <∗
2, where

• <∗
1⊂ T1 × {1} and (t, 1) <∗

1 (t1, 1) iff t <1 t1 and similarly
• <∗

2⊂ T2 × {2} and (t, 2) <∗
1 (t1, 2) iff t <2 t1. �

Is the class Fφ equal to F−−φ? The formula Gp → Fp characterizes
endless time. The class of frames negatively definable by this formula is
characterized by the formula G(p ∧ ¬p) and the class of frames negatively
definable by G(p ∧ ¬p) is characterized by Gp → Fp.

As we see, some classes negatively definable are characterized by for-
mulas of TL, e.g. class negatively definable by Gp → Fp, and some classes
are not, e.g. class negatively definable by Gp→ p.
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3. Grzegorczyk’s Axiom and classes of frames definable by it

It is well known that there is a translation of intuitionistic logic into the
modal logic S4 via provability operator [Boolos, 1993]. The fact was sug-
gested by Gödel [Gödel, ] and proved by Tarski [McKinsey and Tarski, 1948].
There is translation T [[van Benthem, 2001, p. 385] such that for each for-
mula φ of the language of intuitionistic logic INT:

INT ⊢ φ iff S4 ⊢ T (φ).

Andrzej Grzegorczyk [1964; 1967] investigated relational and topological
semantics for intuitionistic logic. Grzegorczyk found a modal formula grz:

�(�(φ→ �φ) → φ) → φ5

that is not provable in S4 but the intuitionistic logic is translatable into
a normal extension of S4 by grz, S4.Grz [Solovay, 1976; Goré et al., 1997;
Goldblatt, 1978].6 Moreover, it has been established that S4.Grz is the
greatest normal extension of S4 for which Gödel’s translation of INT is
still full and faithful [Esakia, 1976; Bezhanishvili, 2009], [van Benthem, 2001,
Theorem 82, p. 385]. Strong provability operator “... is true and provable”
provides a better model for provability than the operator “... is provable”.
The logic of the strong provability operator is known to coincide with Grze-
gorczyk logic Grz [Boolos, 1993].

Grzegorczyk’s axiom defines the class of Kripke frames that fulfills the
following conditions [van Benthem, 2001, p. 385]:
• ∀x : x < x – reflexivity,
• ∀x, y, z : if x < y, y < z, then x < z – transitivity,
• from no t is there an ascending chain t = t1 ≤ t2 ≤ . . . with ti 6=
ti+1, i = 1, 2, . . . – well-foundedness.

The last condition implies antisymmetry.
The Hilbert-style axiomatic calculus K is composed of the classical

propositional calculus, the axiom schemata:
• �(φ→ ψ) → (�φ→ �ψ) – Distribution Axiom,

and the inference rules:
• from φ and φ→ ψ infer ψ – modus ponens,
• from φ infer �φ – necessitation.
S4 is defined as K plus the axiom schemata:

• �φ→ ��φ.

5 �φ can be read “formula φ is provable in Peano Arithmetic”
6 For an overview of results on Grz and its extensions see [Maksimova, 2007].
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If a logic consists of K, �φ → φ, �φ → ��φ, grz, then it is charac-
terized by the class of reflexive, transitive and antisymmetric Kripke frames
which do not contain any infinite ascending chains of distinct points. S4 is
valid in frames defined by grz. S4 laws in K∪ grz were proved around 1979
by W. J. Blok and E. Pledger [van Benthem, 2001, p. 385].
Grz is characterised by a class of Kripke frames which is not first-order

definable, but is decidable.
The fact that Grz is complete with respect to the class of upwards

well-founded partially-ordered Kripke frames is provable only using some
form of the Axiom of Choice [Jeřábek, 2004]. This logic is also complete
with respect to Kripke frames such that T is finite and < is a partial order
[Segerberg, 1971], [Bezhanishvili and de Jongh, 2005, Theorem 84, p. 41].

We can ask about the class of frames negatively defined by grz or about
the class of converse of the Kripke frames complete for Grz. We may also
consider the question of Grzegorczyk’s understanding of necessity in the
context of temporal logic.

There are discussed different definitions of temporal modalities. E.g. �φ

is defined as:
1. φ ∧Gφ – Diodorean,
2. Hφ ∧ φ ∧Gφ – Aristotelian
3. Pφ – is based on the conviction that: Quidquid fuit, necesse est fuisse.7

Kt, the minimal tense logic, is the tense logical counterpart of K. In
temporal logic G and H are semantical (in Kripke semantics) counterparts
of �. In grz the � can be replaced by G and/or by H and grz as axiom
can be added to Kt.

System Kt ∪ {G(G(φ → Gφ) → φ) → φ} is consistent – it has a model
– the model of S4.Grz. The same is true in the case of Kt ∪ {H(H(φ →
Hφ) → φ) → φ}. Now, as in the case of the former system, it is complete
with respect to the class that instead of well-foundedness is conversely well-
founded.

7 Moreover, in [Anselm, Saint Archbishop of Canterbury, 1929, Book II, chapter
XVIII (a)] we read: Quidquid est, necesse est esse, et necesse est futurum fuisse. Quidquid
futurum est, necesse est futurum esse. In the English edition we read: Whatever has
been, necessarily has been. Whatever is, must be. Whatever is to be, of necessity will
be. This is that necessity which Aristotle treats of (“de propositionibus singularibus et
futuris”), and which seems to destroy any alternative and to ascribe a necessity to all
things [Anselm, Saint Archbishop of Canterbury, 1998, Book II, chapter XVIII (a)]. See
http://www.sacred-texts.com/chr/ans/ans118.htm. If necessity is so conceived, the tem-
poral possibility applies only to the future. According to Thomas Aquinas (Qu. 25, art. 4):
Praeterita autem non fuisse, contradictionem implicat (For the past not to have been im-
plies a contradiction). There is a Latin saying: facta infecta fieri non possunt; that is,
what once has happened cannot become not happened.
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Is consistent the system Kt∪{G(G(φ → Gφ) → φ) → φ}∪ {H(H(φ →
Hφ) → φ) → φ}?

If we understand necessity as Pφ we have:

P (P (φ→ Pφ) → φ) → φ

we have to ask if the system Kt∪ {P (P (φ→ Pφ) → φ) → φ} is consistent.
The formula:

P (P (p → Pp) → p) → p

characterizes the class of frames such that t : if t1 : t1 < t, then t1 = t. This
can be understood as showing that the discussed conception of necessity
is too weak from the point of view of Grzegorczyk’a axiom. Are the other
conceptions of temporal necessity sufficiently strong to satisfy Grzegorczyk’s
Axiom in a class of all times?
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Zygmunt Vetulani

WORDNET AND GÖDEL’S COMPLETENESS
THEOREM

Abstract. We claim that Princeton WordNet-like lexical data bases (wordnets)
may be considered as a natural conceptualization of the world in the form of
a language-derived ontology determined by the linguistic concept of synonymy.
We discuss some constraints on synonymy relations which must be satisfied
in order to make sure that wordnet will behave as ontology and will reflect
linguistic relations. We show a close relationship between the concept of wordnet
and Gödel’s Completeness Theorem whose proof is based on the fact that every
consistent formal theory has a model. In particular, we show that, under some
assumptions, wordnets may be generated by Henkin’s algorithm of constructing
such a model.1

1. Introduction

Using a wordnet (which encodes relations between words) to natural lan-
guage processing depends on how much these relations correspond to rela-
tions between the entities in the real world. There is a general agreement
to consider, after the Princeton WordNet creators, that the main word-
net organizing relations are hyponymy/hyperonymy and synonymy [Miller
et al., 1990]. This opinion has important consequences due to the mathema-
tical properties of these relations: transitivity, asymmetry and irreflexivity
for hyponymy and hyperonymy, as well as reflexivity, symmetry, and tran-
sitivity for synonymy.

2. Words and word-meaning pairs

Let us notice that satisfaction of these properties depends on some impor-
tant prerequisites. First, due to the common (for natural languages) phe-

1 In this paper we will use the term “wordnet” to designate lexical data bases inspired
by Princeton WordNet.
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nomenon of polysemy, we assume that the above mathematical properties
have to be applied not to words but to disambiguated words called word-
meaning pairs in the rest of this paper. In other terms, a word-meaning pair
is a word with one precise meaning. Meaning identification is indispens-
able to understanding text or discourse. Meaning distinction is a common
practice in most dictionaries. Some of them also include information about
pragmatic aspects such as frequency, register etc. As the ability to recognize
the correctness/incorrectness of a sentence (abstraction making of its truth
value) is a part of language competence, we will propose to use the following
criterion to recognize that the given word W is used with different meanings
in the given sentences A and B. This is so when the following hold:
• both sentences A and B are correct,
• there exists such a meaning of W that A is correct with this meaning

while B is not, or conversely.
For instance the word “window” in sentences like “He was seen this

morning watching through the window” and “You need to open the window
in the top left corner of the screen”.

3. Synonymy

For the word-sense pairs we define synonymy with the help of the notion
of substitutivity. Already Leibnitz used this concept in his definition of
synonymy of words (citation after [Vossen, 2002]):

two expressions are synonymous if the substitution of one for the other never
changes the truth value of a sentence in which the substitution is made.

According to [Vossen, 2002], Miller and Fellbaum observed that with such
strong definiens, very few words will have synonyms – which is against com-
mon intuition about synonymy; they propose to modify Leibnitz’s definition
to some “linguistic context C” as follows [Miller et al., 1990]:

two expressions are synonymous in a linguistic context C if the substitution
of one for the other in C does not alter the truth value.

Vossen [2002] remarks that [Miller et al., 1990] suggest that it is enough
to find one such context to apply the substitutivity criterion for synonymy.
As an example of a pair of synonyms in the sense of Miller’s definition,
Vossen discusses “appearance” and “arrival” (see citation in Section 4, be-
low). These words are presented as synonymous, as in some appropriate
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contexts C they satisfy the above substitutivity criterion of synonymy. On
the other hand, comparing them respectively to “disappearance” and “de-
parture”, one observes that some kind of opposition holds between “arrival”
and “departure” but doesn’t hold between “arrival” and “disappearence”
despite that “disappearence” and “departures” are considered both as be-
ing antonyms for, respectively “appearence” and “arrival”. This means that
the appropriate extension of the context can lead to the conclusion that
these two words (with unchanged meaning) are no more substitutable in
the extended context. (This example is also explored in the discussion of
antonymy in Section 5). Applying different contexts to compare different
word pairs may therefore result in a situation where synonymy will no more
be transitive, which would invalidate the idea of synset as an equivalence
class. It seems that a (theoretical) solution to this problem (in application to
word-meaning pairs rather than to words) will consist in further generaliza-
tion of the approach proposed by Miller and Fellbaum, namely in applying
the substitutivity requirement with respect to some (possibly large) class
of sentences (context class) selected in a way to guarantee synonymy to be
reflexive, symmetric, and transitive (i.e. to be an equivalence relation).2 For
a given class Z of sentences we will define “synonymy respective to Z” by
restricting substitutivity to Z. It is clear that if Z stands for the totality of
sentences about the world, then synonymy with respect to Z will be identical
with the synonymy in the sense of Leibnitz (for word sense pairs).3

Having the relation of synonymy already defined in such a way that it
has the properties of an equivalence relation, we define synsets as equivalence
classes with respect to this relation.

4. Wordnet as ontology

Relations holding between word-meaning pairs (disambiguated words) may
in a natural way be mapped to synsets if only synonymy is congruent with
these relations. By definition, the given equivalence relation is told to be
congruent for the relation R if the fact that R holds/does not hold for some
elements E means that, respectively, R holds/does not hold for the elements

2 We consider this solution to be theoretical, as we are aware of the possibly large size
of such a theoretical context, so that in practice a limited context will have to be used.
3 The problems discussed above were (probably) the reasons for Vossen and others

[Vossen, 2002] to make another decision for EuroWordNet. Instead of referring to the
concept of substitutivity they decided to define synonymy using linguistic tests to compare
the extension of words (or word sense pairs).
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which are equivalent to E.4 In a case where synonymy is congruent with
respect to hyperonymy and hyponymy we say that the quotient structure
(composed of synsets and hyperonymy/hyponymy mapped to synsets) is
a basic wordnet (or briefly wordnet).

The basic wordnet can be considered as an ontology in which concepts
(represented by synsets) are directly related to the language. The interest
of considering a wordnet as an ontology for NLP applications is that it di-
rectly reflects the conceptualization of the world in the same way as does
the natural language (more precisely the natural language that the corre-
sponding wordnet is derived from), i.e. it is culturally dependent.5 This is
why wordnets are interesting as ontology candidates for natural language
processing applications.

The fact that synonymy may be defined with reference to an external
parameter (context class) which may be modified according to the users’
needs makes it possible to extend the basic wordnet by introducing other
relations mapped from the linguistic relations between word-meaning pairs,
such as antonymy, metonymy, and other. In practice, introduction of new
relations to the existing wordnets may be difficult because it is necessary to
make sure that the synonymy is congruent with the linguistic relations we
wish to be mapped to synsets. This may require redefinition of the synonymy
(by modification of the context class used in the definition of synonymy) and
change the wordnet granulation (refinement).

The case of antonymy is a well described example of a mapping-to-
wordnet problem for a linguistic relation. Both G. A. Miller and P. Vossen,
designers and developers of wordnets, articulated their doubts about the
possibility to express antonymy at the wordnet level. Vossen [2002] wrote
the following in the final EuroWordNet report.

Antonymy relates lexical opposites, such as “to ascend” and “to descend”,
“good” and “bad” or “justice” and “injustice”. It is clear that antonymy is
a symmetric relation, but little more can be said, since it seems to encode
a large range of phenomena of opposition, e.g. “rich” and “poor” are scalar
opposites with many values in between the extremes, “dead” and “alive” can
be seen as complementary opposites (...). It is also unclear whether antonymy
stands between either word forms or word meanings. For instance, “appear-
ance” and “arrival” are, in the appropriate senses, synonyms; but linguistic

4 By “mapping to synsets” we mean the act of defining the relation R’ operating on
the equivalence classes to hold if and only if the relation R holds for some elements of
these equivalence classes; the equivalence classes form the so called quotient structure.
5 The EuroWordNet and other similar projects (as e.g. BalkaNet) are nice and quite

successful attempts to integrate various “national”, culturally-dependent wordnets.
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intuition says that the appropriate antonyms are different for each word (“dis-
appearance” and “departure”). With respect to this, EWN (EuroWordNet)
will assume the solution adopted by Miller’s WordNet, that is, antonymy is
considered to be a relation between word forms, but not between word mean-
ings – namely synsets. Therefore, in the example above, the antonymy relation
will hold between “appearance” and “disappearance”, “arrival” and “depar-
ture” as word forms. In those cases that antonymy also holds for the other
variants of the synset we use a separate NEAR ANTONYM relation. (...)

It seems however that with an appropriate understanding of antonymy
and synonymy there is no need to go so far and to resign from having
antonymy defined on synsets. Let us assume that A is a set of pairwise or-
thogonal binary attributes. By antonymy (restricted to nouns) with respect
to A we mean such a relation which holds between two word-meaning pairs
if and only if there is exactly one attribute from A for which these word-
meaning pairs take opposite values. The sufficient condition for synonymy
to be congruent with respect to antonymy is that “antonyms of any two
synonymous word-meaning pairs are synonymous to each other”. To make
this condition true we must further restrict the synonymy relation by con-
sidering appropriate sentences related to the attributes A as a part of the
context set used to define synonymy. It follows that imposing these new
restrictions to the definition of synonymy may cause further fragmentation
of synsets.

5. Gödel’s completeness theorem and wordnets

Considering wordnets as natural6 ontologies in which concepts are repre-
sented by language entities appears to be compatible with the correspon-
dence between semantic consequence (entailment) and syntactic provability
in first-order logic established by Kurt Gödel [1929; 1930]. This correspon-
dence directly follows from the so called completeness theorem which is
a simple conclusion from the statement that “each consistent first order
theory has a model”7 (i.e. there exists a world in which the theory is true).
The Henkins [1949] proof of this theorem shows how to construct, for a con-
sistent theory in first-order logic, an algebraic structure which is a model
for this theory. It appears that, for a given wordnet, a consistent theory T

6 “Natural” means here “corresponding to the conceptualization shared by language
users”.
7 We use the term “model” in the sense it has within the mathematical model theory.
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may be found for which the Henkins construction will result with a model
isomorphic with this wordnet. The Henkins idea of constructing the model
consists in adding new constants, and then in constructing (in the extended
language) a complete set of sentences8 consistent with the given theory. In
particular among the new individual constants the model construction al-
gorithm selects individual names for entities whose existence is postulated
by existential sentences belonging to the constructed complete set of sen-
tences. The idea of the construction of a model of the theory T follows
the following lines. First we extend the language L of the theory T to the
language L’ introducing a new countable infinite set C of individual con-
stants. Then we build an infinite sequence 〈Sn〉n=0,1,... of set of sentences
of the language L’. Let P = 〈Pn〉n=0,1,... be the sequence enumerating all
prenex-normal-form formulas of the language L’. We construct successive
consistent extensions Sn of T by first putting T as S0 and then consid-
ering one by one the formulas from the sequence of sentences P . At each
step we check whether the considered formula belongs to Cn(Sn) or not.9

If the negation of the formula Pn considered in step n belongs to Cn(Sn)

(i.e. is a logical consequence of Sn), then we add it to Sn and obtain Sn+1,
otherwise we consider two subcases. If the formula Pn is not an existential
sentence, then we simply add it to Sn to obtain Sn+1. Otherwise, together
with this existential sentence we add to Sn the sentence in which the exis-
tential quantifier is omitted and the variable bounded by the quantifier in
the considered sentence is replaced by a new (i.e. still not used in this exten-
sion procedure) constant from C (this sentence is a constructive witness of
the existence of an entity with the required property). We denote by S the
union

⋃

n∈N Sn of all successive consistent extensions of T . The resulting
set of formulas S is consistent and complete, i.e. for each sentence φ of the
extended language L’ either this sentence φ or its logical negation not(φ)
belongs to S. Then we define in the set C of individual constants the follow-
ing relation ∼ which turns out to be an equivalence relation. Specifically,
we define

s1 ∼ s2 ↔df ‘s1 = s2’ ∈ Cn(S)

This relation can be extended to the whole Herbrand universe U of
the language L’ (here the Herbrand universe consists of all terms with no

8 By a complete set of sentences we mean any set S of sentences that for any given
sentence ϕ, either φ belongs to S or its negation not(φ) belongs to S.
9 Cn(Sn) is the set of all logical consequences of Sn, i.e. the set of all sentences

provable from Sn.
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free variables). This relation is a congruence with respect to all relations ℜ
defined in a natural way through S for all R as follows:

ℜ(t1, t2, . . . , tk) ↔df ‘ℜ(t1, t2, . . . , tk)’ ∈ Cn(S)

The set of equivalence classes over U with induced relations forms the
quotient structure. The rest of the proof of Gödel’s theorem consists in
showing that this quotient structure is a model for S, and therefore for T.10

Our further considerations depend on the assumption following Mon-
tague’s famous conjecture that natural language may (with some limits) be
considered as a formal language and, therefore, that Tarski’s truth concept
is applicable. In particular we will also consider word-meaning pairs instead
of words. The validity of considerations will be limited to the fragment of
natural language which, in accordance to the ideas of Richard Montague,
may be considered as equivalent to the language of first-order predicate
logic.11 With this assumption, the set of true sentences about the real world
may be considered as a theory of the natural model (the natural model
being the conceptualization of the real world). Clearly, the theory of the
natural model is consistent.

The relation of synonymy, introduced above in our paper with reference
to the idea of substitutivity, may be formalized in the following way. By
an NL context (or context, for short) we mean a text with a variable X
occurring one or more times. By K(s) we will denote the context K with all
occurrences of X substituted by (the appropriate form of) s. Let us consider
the finite class of contexts K = {contexti : i = 1, 2, . . . , k} with the property
of distinguishing all word meanings for any given word. Let us consider the
relation ≈ in the set of word-meaning pairs of the natural language defined
as follows:

s1 ≈ s2 ↔df the sentence ‘∀i=1,2,...,k (contexti(s1) ↔ contexti(s2))’
is true in the natural model

The relation ≈ is an equivalence relation in the set of word-meaning
pairs and – according to our terminology – the corresponding equivalence
classes are synsets.

Let us observe that the correct use of synonyms by natural language
speakers do not entail contradictions (provided that the speakers correctly
distinguish the word-meanings). This means that we may assume that

10 For more details the reader may consult the Grzegorczyk [1974] or Shoenfield [1967]
textbook on the foundations of logic.
11 c.f. the paper by R Montague [1970] on English as formal language.
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the word sense pairs satisfy the additional equality axiom for synonyms
in the form of the following formula:

‘∀i=1,2,...,k(contexti(s1) ↔ contexti(s2))’ → s1 = s2

In other terms, the equality axiom for synonymy is consistent with the
theory of the natural model (for the correctly chosen set of contexts K).
This last remark allows us to claim that Henkin’s model constructed to
prove Gödel’s conjecture, when applied to natural language, is built out of
natural language synsets (the relations ∼ and ≈ are in fact identical).

6. Conclusions

The above considerations allow us to notice a close connection between
two, at first sight very different from each other, scientific ideas. The first
one is that wordnets conceived as networks of connections between nat-
ural language words appear to be natural ontologies whose concepts are
directly linked to language entities (which means that these ontology con-
cepts may be represented in computers in a way that eases their application
in natural language processing). We have discussed some essential theo-
retical problems related to the theoretical foundations of the concept of
wordnet, mainly those connected with the nature of the relation of syn-
onymy and we have presented the algebraic structure of the wordnet(s),
as well as some fine problems connected with the operation of mapping
the linguistic relations to the universe of synsets. The second of the two is
the idea of the constructive proof of Gödel’s completeness theorem which
contributes to a better understanding of the relationship between syntac-
tic consequence (entailment) and semantic consequence. The key element
of this proof is a procedure to construct the model for a consistent the-
ory. This model is built out of terms of a (formal) language. We have
shown (under some assumptions) that a model constructed according to
this procedure for a consistent set of true sentences about the world is
equal to a wordnet. This means that the model postulated by Gödel’s
theorem corresponds to the natural conceptualization of knowledge about
the world represented in natural language. Our final message is that one
may safely claim that Kurt Gödel’s work was an early portent for the
idea of a wordnet as a natural ontology whose concepts are directly linked
to words.
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Abstract. This paper investigates the genesis of logic as a philosophical problem
treated from a naturalistic point of view. Logic is defined via the consequence op-
eration Cn. This operation is a kind of closure operation similar to that studied
in topology. Since logical competence (the skill to use Cn) is a manifestation of
logic, the main problem can be framed as the question: How the consequence of
operation emerged in biological organisms, particularly the human one. Various
data from microbiology suggest that organisms have various devices protecting
information from its dispersion. One can even say that sequences of DNA have
some topological properties. The main thesis is that Cn is superstructured on
such properties.

It is traditionally accepted that we differentiate between logica docens
and logica utens, that is, between theoretical logic (logic as theory) and ap-
plied or practical logic. Both can be defined with the use of the notion of
logical consequence. The first is a set of consequences of an empty set, sym-
bolically LOGT = Cn∅, provided that the operation Cn satisfies the well-
known general Tarski’s axioms, i.e. denumerability of the language (a set
of sentences) L, X ⊆ CnX (the inclusion axiom; X,Y are sets of sentences
of L), if X ⊆ Y , then CnX ⊆ CnY (monotonicity of Cn), CnCnX = Cn
(idempotence of Cn) and, if A ∈ CnX, then there is a finite set Y ⊆ X

such that A ∈ CnY (Cn is finitary). Cn is a mapping of the type 2L → 2L,
that is, transforming subsets of L into its subsets. In order to make things
simpler, I assume that Cn is based on classical logic. LOGT can also be de-
fined as the only common part of the consequences of all sets of sentences.
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Otherwise speaking, logic is the only non-empty intersection of the family
of all subsets of L. What follows from this is that logic is included in the
consequences of each set of sentences, which underlines its universal char-
acter. If CnX ⊆ X, then X = CnX due to the inclusion axiom. Moreover,
if CnX ⊂ X, we say that that X is closed by the consequence. This is the
definition of a deductive system (a deductive theory). Thus, in the case of
deductive systems, Cn does not extend X beyond itself. The concept of
logical consequence belongs to the syntax of language. The notion of logical
following (entailment) is a semantic counterpart of Cn. The properties of
both of these notions are such that if A ∈ CnX and X consists of true
sentences, the sentence A also must be true as well. If X is a theory and the
set CnX coincides with a set of true sentences (specifically: true in a deter-
mined model M or relevant class of models) of X, this theory is semantically
complete.

The statement that Cn closes sets of sentences as long as CnX ⊆ X,
suggests some analogies with topology, since certain properties of this oper-
ation satisfy Kuratowski’s axioms for topological spaces. Let Cl denote the
closure operation of a topological space, and X,Y – any subspaces (subsets);
I intentionally use the same letters for denoting sets of sentences and sets
investigated by topology. Then [Duda, 1986, p. 115]:
1. Cl∅ = ∅;
2. X ⊆ ClX;
3. ClClX = ClX;
4. Cl(X ∪ Y ) = ClX ∪ ClY .

Operations Cn and Cl differ from each other as far as the matter consists
of axioms 1 and 4, because, in the case of logic, set Cn∅ is non-empty
and CnX ∪ CnY ⊆ CnY (but the reverse inclusion does not hold). The
first difference is founded on the specific definition of logic, which does
not possess a clear topological sense (I will return to this question below),
while the other one indicates a partial analogy between closed sets in the
topological sense and deductive systems in the logical sense, because 4 does
not hold for arbitrary sets of sentences. Thus, “logical” closure is weaker
than a topological one. The set of theses of logic is for sure non-empty and
it is a system. It can be treated as a specifically closed topological space,
with individual theorems as its points.

Topology {∅ = Cl∅,X} is minimal (see [Wereński, 2007, p. 124]) in
the sense that the smallest one cannot be examined. Next, Cl∅ ⊆ ClX,
since for each X, ∅ ⊆ X. Let us agree (this is a convention) that Cl∅ is
a topological equivalent of logic. Motivation for this convention consists in
taking into consideration that a proof of logical theorems does not require
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any assumption. The evident artificiality of this convention can be essen-
tially weakened by the acknowledgment that closing an empty set produces
any theorem of logic. It can be shown that if A and B are theses of logic,
then Cn{A} = Cn{B}, which means that any two logical truths are deduc-
tively equivalent. Let us assume that X (this time as a set of sentences) is
consistent and consists of the set X ′ of logical tautologies and a set X ′′ of
theorems outside logic. Thus, X ′ = Cn∅ and X ′′ ⊆ J \X ′. Sets X ′ and X ′′

are disjoint and constitute mutual complements in the set (space) X. Since
set X ′ is closed, its complement, i.e. X ′′ is an open set. The introduced con-
vention about Cl∅ allows one to “topologize” the properties of sets of theses;
in particular it makes it possible to treat the set X (of theses) as a clopen
set. From the intuitive point of view, the operation of logical consequence
encodes inference rules for deriving some sentences from other sentences;
that is, a deduction of conclusions from defined sets of premises. Deduction,
at the same time, is infallible; that is, it never leads from truth to falsity.

What is applied logic or logica utens? When X is any non-empty set of
sentences, then applied logic LOGA(X) of this set can be associated with
operation Cn applied to X. This is applied logic in a potential sense. This
understanding of logica utens is, however, decidedly unrealistic, since its
user applies only these rules that he needs, independent of whether or not
he does so in a conscious way. In other words, real applied logic of a given
set is the stock of those logical laws (or rules) that are used in a concrete
inferential work. This circumstance makes it impossible to give an abstract
definition of real applied logic. It is worth observing that Cn can be based on
a non-classic logic, e.g. intuitionistic, many-valued or modal logic. Furthe-
more, we can neglect the monotonicity condition in order to obtain a non-
monotonic logic. These remarks point to the fact that non-classical logics are
similarly definable as the classical system. Since applied logic operates on
closed-open sets, they, by this assumption, contain extra-logical sentences
beside theorems of logic; the inclusion condition decides that logic can be
deduced from any set of sentences. This fact has serious methodological im-
portance. If deduction within closed sets ‘leads’ to accumulation points in
the topological sense, adding new extralogical sentences can be executed in
an extra-deductive manner. This corresponds to the definition of an open
set as such that includes all of its neighborhoods. To put it in a different
way, the transition to neighborhoods of sentences as points in spaces in the
set X” – that is, extension of this set – can be non-deductive. The above
considerations suggest that there was logica docens ‘at the beginning’ and it
became logica utens through application. According to this image, logic is
thus applied like already ready mathematics in a concrete physical theory,
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e.g. Euclid’s geometry in classical mechanics or non-Euclidean geometry in
a specific theory of relativity. This circumstance makes a naturalistic inter-
pretation of logic difficult, and even impossible, because, generally speaking,
laws of logic are considered abstract to the highest degree and as such are
thought to belong to Plato’s world of forms.

A contemporary follower of Plato says that naturalism is helpless with
respect to the domain of abstracts for two reasons. Firstly, because the
naturalistic view acknowledges the existence of temporal-spatial objects as
the only ones (there exclusively exist temporal-spatial and changeable ob-
jects), while the logical realm exists out of time and space. According to
Platonism, this is the main ontological difficulty of naturalism. Secondly,
the naturalist also faces an epistemological problem, since as a genetic em-
piricist with respect to sources of cognition he or she cannot elucidate the
genesis of the genuine universal and infallible knowledge represented by logic
and mathematics. In particular, the follower of Plato adds that no empir-
ical procedure is able to generate logical theorems as true, independent of
empirical circumstances. Platonism is – as a matter of fact – a historical
and metaphorical label on the above remarks. From the systematic point of
view, it is much better to use transcendentalism (or anti-naturalism) as the
opposition against naturalism, since every criticism of naturalism (sooner
or later) makes references to transcendental arguments in the sense of Kant.
It is in this way that, for example, criticism of psychologism (as a version
of naturalism) was executed by Frege and Husserl; one could say the same
about Moore’s arguments against the reductibility of axiological predicates
to non-axiological ones. In general, transcendentalists reproach naturalists
with what Moore defined as a naturalistic fallacy on the occasion of his crit-
icism of reduction of moral values to utility. Dualisms of facts and values or
logical and extra-logical theorems are not the only ones which naturalism
has difficulties with. Other oppositions, from which – in the transcendental-
ists’ opinion – naturalists are cut off in the sense of the impossibility of their
satisfactory explaining are, for example, the following: physical information
– semantic information or quantity – quality.

It, of course, is fairly true that naturalism must meet various difficul-
ties. Criticism of this view, however, overlooks problems of anti-naturalism,
which Moore had already drawn attention to. The arguments he used were
that super-naturalistic (Moore used this qualification) grounding of moral-
ity as rooted in the supernatural world is a similar error to that of reduc-
tion of axiological predications to ones definable in purely natural cate-
gories. Another problem of transcendentalism arises in connection with the
so called Benacerraf argument indicating the enigmatic character of cogni-
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tion of mathematical objects provided that each cognition consists in causal
interaction on the part of the object of epistemic acts, while numbers –
on the power of their nature according to Platonism – do not interact in
a causative way on people. How, then, can an anti-naturalist explain the
genesis of logic? He or she can either assume – as Plato did – that the world
of abstract forms is eternal, or argue – like Descartes – that certain ideas are
inborn, or still – like some theists – that man obtained logic as a gift from
God when he was created as imago Dei. The Platonic and Cartesian paths
are ad hoc, whereas that of the theists is based on extra-scientific premises.
In any case, the situation of an anti-naturalist is not to be envied as it
must resort to secret beings (souls, spirits, ideas) and secret kinds of cogni-
tion (intellectual intuition, etc.). The naturalist can paraphrase the title of
Hoimar von Ditfurth’s book Der Geist fiel nicht vom Himmel (The Ghost
Has Not Fallen From Heaven) by saying that logic has not fallen from the
other world, Platonic or other (see [Ritchie, 2008] for a general discussion
about naturalism; as regards defense of naturalism in other contexts com-
pare [Woleński, 2006; 2010a; 2010b; 2011]; see [Papineau, 1993] for a defense
of philosophical naturalism).

For a positive naturalist’s account of the genesis of logic it is indispens-
able to combine the dychotomy logica docens – logica utens with the notion
of logical competence, modeled on grammatical competence in Chomsky’s
sense. Both abilities play a similar role. The grammatical competence gen-
erates the right usage of linguistic devices, while the logical competence
determines the application of logical rules in inferential processes. Never-
theless, the analogy is not complete, at least according to my own concept
of the question. Much as Chomsky defines grammatical competence simply
as grammar, the distinction which I am going to use differentiates logic,
both theoretical and applied, from logical competence. The last category
refers to a determined disposition of the biological organisms which are able
to perform mental functions (compare further comments below). Speak-
ing more precisely, logical competence is the ability to use operation Cn.
A logical theory is not thus logical competence, but its articulation. The
dispositional character of logical competence does not settle whether each
element of logic as a theory finds its coverage in its natural generator. By
the way, a negative answer is rather obvious as the development of logical
theories was and is heavily dependent on nature and the need for commu-
nicative interactions within human society. Further considerations in this
paper will be devoted to the genesis of logical competence. They refer to
the genesis of logic inasmuch as without the possibility to create and apply
rules of logic, there would not appear logic in either of the two distinguished
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senses. In other words, logica docens and logica utens are derivatives (pre-
cisely speaking – one derivative) of logical competence. This circumstance
justifies the title “Naturalism and the genesis of logic”. Anyway, one of the
main theses of this paper says that logical competence is not eternal; it ap-
peared in the Cosmos at some time and is rooted in the biological structure
of organisms. However, I have to make it clear at once that I do not treat
my comments relating to the biological question as empirical. My cognitive
interest is of a philosophical nature and remains within evolutionary episte-
mology. Yet, however, in compliance with my metaphilosophical convictions,
I have to take into consideration the output of empirical sciences, biology,
in particular, in the analysis of philosophical problems. Speaking otherwise,
philosophical analysis, though somehow speculative in its character, is su-
perstructured on empirical knowledge.

In accordance with the above explanations, logical competence precedes
logic, both theoretical and applied; nevertheless, there is also a feedback be-
cause theoretical reflection on logic and its applications to concrete questions
can enhance the logical competence. Everything points to the fact that log-
ical theory required prior application of rules of logic and the development
of language. In the case of Mediterranean culture, applied logic appeared,
for sure, with Greek mathematicians and philosophers. When Anaximan-
der said that there does not exist the principle of closeness, since it would
create a boundary of apeiron which is boundless, he made use of a rule
similar to regressum ad absurdum. Pythagoras proved the existence of irra-
tional numbers and his reasoning was a proof by reduction in the modern
sense. Various paradoxes formulated by the Eleats were of a similar charac-
ter. The first logical theory, that is Aristotle’s syllogistics, originated much
later, although on the basis of extensive practical material accumulated ear-
lier. It was also, in a vital way, linked to the structure of sentences of the
Greek language. One cannot, however, say that carrying out logical oper-
ations requires knowledge of language because they are typical of infants
(see [Langer, 1980]), and the latter do not have linguistic material at their
disposal yet.

The question of the sense of understanding in animals, other than hu-
mans, is controversial, yet the following example (which can be treated as an
anecdote) is only too suitable in this place (see [Aberdein, 2008]). In 1615,
in Cambridge, there was held a debate devoted to dog logic, which was
attended by King James I. The problem concerned the question whether
hunting dogs which were used for locating game during hunting, applied
logic, in particular the so-called law of disjunctive syllogism in the form
“A or B, thus if non-A, then B” (this question had already been consid-
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ered by Chrysippus). Let us suppose that a hound reaches a fork in the
road. The trailed game runs away to the right or to the left. The hound
establishes that it is not to the left, and therefore runs to the right. The
debate had a very serious character and a truly academic form. John Pre-
ston (a lecturer of Queens’ College) defended the thesis that dogs apply
logic, whereas his opponent, namely Matthew Wren (of Pembroke College)
argued that hounds are directed solely by scent and it is the only reason
why they choose the right direction. The role of moderator was played by
Simon Reade (of Christ’s College). When the latter acknowledged Wren to
be right, the King, himself a great enthusiast of hunting and relying on his
own hunter’s experience observed that the opponent, however, should have
a better opinion of dogs and lower of himself. Wren, very skillfully man-
aged to get out of the tight situation by saying that the King’s hounds –
in contrast to others – were exceptional, since they hunted upon the ruler’s
order. This compromising solution is said to have satisfied everybody. After
all, even if hunting dogs do apply disjunctive syllogism occasionally, they
certainly do not do this making use of a language.

The debate held in the presence of the King of England is a good illus-
tration of a certain difficulty as regards the analysis of the genesis of logic.
There appears the question of what evidence could help here. The debaters
in Cambridge considered dogs’ behavior and drew conclusions from that. In
the case of humans we can observe signs of inferential processes in people
or base ourselves on the written evidence of the past. Anyway, the empiri-
cal base is greatly limited. Not much can be inferred from the inscriptions
found on walls of caves inhabited by our distant predecessors. All the infor-
mation through which human logical competence manifested itself has been
recorded in a language developed to such a degree that it made it possible
to encode the deductions carried out factually, even if it did not suffice to
formulate a logical theory. In this respect, the genesis of logic appears to be
more mysterious than the appearance of mathematics (see [Dehaene, 1997])
or language (see [Botha, 2003; Johansson, 2005; Larson et al., 2010; Taler-
man and Gibson, 2012]). In both mentioned domains, especially in the latter
one, there have appeared a host of works. In particular, the question relat-
ing to whether animals can count and make use of a language, at least of
a protolanguage (see [Hauser, 1998; Bradbury and Vehrencamp, 1998]).

Studies in the origins of logic are limited to research into the logical
competence of children going through their pre-language period, or that of
people living in primitive societies. This provides solely epigenetic and on-
togenetic material, whereas phylogenetic only to the extent in which the
traditional and strongly speculative Haeckel’s assumption that ontogenesis
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reproduces phylogeny is accepted. Nevertheless, considerations concerning
the origins of the genesis of calculating competence and language compe-
tence are important also to the discussion on the origins of logic. This con-
cerns, in particular, the concept of the origin and development of grammar
and sign systems (see [Heine and Kuteva, 2007; Hurford, 2012]). According
to a fairly common conviction, signs were the earliest to appear, especially
expressive ones, then iconic signs, followed by symbols. This corresponded
to the evolution of grammatical structures from nominal through sentential-
extensional to sentential-intensional. Thus, the development of language
progressed on the basis of transition from a-semantic or little-semantic ob-
jects to fully-semantic (intensionality symbolism). The origin of language
has always been an object of animated interest on the part of philosophers
(compare [Stam, 1976] for a review of earlier theories). In 1866, the French
Linguistic Society decided that considerations on this subject should be ex-
cluded from the sciences. As a matter of fact a renaissance of studies of
the appearance and evolution of language was observed beginning with the
middle of the 20th century. One can speculate that works which treat of the
genesis of logic, if they had been written on a mass scale in the first half
of the 19th century, would have shared the fate of linguistic dissertations on
the origin of language as too speculative.

It is not without significance to model microbiological and neurologi-
cal processes, for instance through cell automata (see [Ilachinski, 2011]) or
even with the help of advanced mathematical techniques (see [Bates and
Maxwell, 2005]) and computational ones (see [Lamm and Unger, 2011]).
These enterprises indicate that the organisms themselves and whatever is
happening inside them possess properties which can be formulated mathe-
matically. However, far-fetched methodological carefulness is indispensable.
The title of one of the quoted books runs as follows DNA Topology. It can be
understood in a dual way: firstly, it suggests that, for instance DNA in cer-
tain circumstances has a looped structure; secondly, this can be understood
in a weaker manner, i.e. in such a way that the topological notion of a loop
models certain properties of DNA. Reading the book by Bates and Maxwell
inspires to conclude that the authors make use of both meanings. My opin-
ion on this problem consists in recommending another sense of modeling. It
is assumed here only (or as much as that) that the world is mathematizable
(that is describable mathematically) due to its certain properties, yet is not
mathematical. Works in the field of the evolution of language and those
devoted to modeling biological phenomena, as a rule, accept naturalism,
silently or explicitly. An expression of that is the appearance of biosemi-
otics (see [Barbieri, 2011; Bar, 2008; Hoffmeyer, 2008]), cognitive biology
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(see [Auletta, 2011]; this author declares the theistic Weltanschauung, yet
suspends it in his book) or the ever more popular physicalization of biology
(see [Luisi, 2006; Nelson, 2008]). Since syntheses of biology and semiotics or
biology and cognitive science can be conducted, there is no reason why we
should not link logic to biology.

The only advanced attempt at naturalistic grounding of logic that I am
familiar with derives from William Cooper (see [Cooper, 2001]), who consid-
ers the following sequence: (⋆) mathematics, deductive logic, inductive logic,
theory of decision, history of life strategies, evolution theory. The relations
between elements (⋆) are such that from evolution theory to mathematics we
deal with implication, whereas reduction proceeds in the opposite direction.
As far as deductive logic is concerned, it is directly implied by inductive
logic and reduces itself to the latter. The evolution theory is the ultimate
basis, both for implication and reduction. Briefly speaking, deductive logic
arose at a certain stage of evolution (Cooper does not make it precise in
detail) through natural selection and adaptive processes. Cooper’s schema
leaves a lot to be desired. Omitting the lack of a more detailed definition of
‘production’ of logic through the process of evolution, which was indicated
earlier, the notions of implication and reduction are not clear in Cooper’s
model. Since deductive logic (that is Cn∅) is implied by any set of sen-
tences, the role of inductive logic (I neglect here disputes relating to its
existence; however, see below) is not specific. In consequence, reduction of
deductive logic to inductive logic appears to be highly unclear. Moreover,
the phrase ‘logic as part of biology’ (the subtitle of Cooper’s monograph)
is ambiguous. It may mean that logica docent is a part of biological the-
ory (more precisely: evolution theory) or, also, that deductive competence
(Cooper does not use this name) is an element of the biological equipment
of a human being. Indeed, in compliance with the well-known maxim of
Theodosius Dobzhansky, nothing has sense in biology if it is not considered
in the context of evolution, but this does not mean that everything can be
explained on the basis of evolution theory. Cooper, in his analysis, ignores
genetics completely which is, perhaps, the most serious deficiency of the
model.

A purely evolutionistic classical approach towards the establishment
and development of human mental competences such as the ability to use
a language or reasoning is – in outline – as follows (it can be found in count-
less publications dealing with the theory of evolution and its application
to different specific problem areas; compare for instance [Lieberman, 2005;
Tomasello, 2010]). The Universe appeared about 15 billion years ago (all the
dates here are given in approximation). The age of our Earth is 4.5 billion
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years. The first cell appeared a billion years later, and multicellular organ-
isms after the next 2.5 billion years. Plants have been around for 500 million
years, reptiles – for 340 million years, birds – 150 million, and apes – for
7 million years. The species of homo appeared two million years ago, homo
erectus – from 1 million to 700 thousand, and homo sapiens – 200 thou-
sand years ago. The cultural-civilization evolution marked by language (in
the understanding of our modern times), the alphabet, and writing began
8,500 years ago. Three and a half billion years from the moment of the
appearance of the first cell to that of the appearance of civilization and cul-
ture was completely sufficient to form a mind capable of performing typical
intellectual activities, in particular, to carry out a logical operation. Homo
sapiens must have been able to do so much earlier; maybe it happened at the
beginning of this species. It cannot be ruled out that the rudiments of log-
ical competence had already been available to homo erectus. Establishing
the date of the appearance of logical competence in the course of evolu-
tion, and also attributing it to other organisms than human seems here not
particularly important. A safe evolutionist hypothesis in this respect can
claim, for instance, that inferential ability appeared by way of randomly
acting mutation, and because it proved to be an effective adaptive tool,
it was developed by homo sapiens, also thanks to available and more and
more perfect linguistic instruments. The logical theory appeared as the final
product of a long evolution process. This is an adaptation of the classical
concept of the evolution of language (compare, however, the conclusions at
the end of the paper).

Neo-Darwinian evolutionism connects the appearance of life and its
further evolution with entropic phenomena (see [Brooks and Wiley, 1986;
Küppers, 1990]). This perspective leads to the need for indicating anti-
entropic phenomena, i.e. mechanisms which maintain the stability of organ-
isms and their internal order, and thereby determine the continuance of their
existence (see [Kauffman, 1993]). The decisive event to enhance a serious re-
vision of evolution theory was the discovery of DNA structure by Crick and
Watson in 1953 (the model of the double helix), as well as further research
into genetic encoding. Those results demonstrated the necessity of more pro-
found linking of evolution with genetics. The notion of genetic information
and the manner of its transfer became key instruments of a new biologi-
cal synthesis, obviously, while keeping suitably modified classical categories
of evolution theory. Notice that formal analogies between information and
entropy have caused biologists and philosophers of biology to become inter-
ested more closely in relations between the first notion and the course of
biological processes since as early as the 1920s (see [Wereński, 2005]).
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Several facts established by molecular biology are significant from the
point of view of this paper (for a while I mention them without a ‘meta-
logical’ commentary; I entirely omit the physical-chemical questions, like-
wise the mechanism of hereditariness). Firstly, passing genetic information
is directed from DNA through RNA (more precisely: mRNA – the letter
‘m’ denotes that RNA is in this case a messenger, that is an agent pass-
ing information) to proteins. This observation makes the so-called main
dogma of molecular biology. There are, as a matter of fact, certain ex-
ceptions in this respect (e.g. in the case of viruses), but at least in the
so-called eukaryotic organisms (humans belong to this biological group)
transmission of information is in compliance with this dogma. Secondly,
genetic information is passed in ordered, linear and discrete, and sequen-
tial a manner. Thirdly, DNA particles are subject to replication (copying)
and recombination (regrouping). Fourthly, the intracellular information sys-
tem encodes and processes information, which causes the encoding in ques-
tion to be interpreted as a computational system and to be modeled ac-
cordingly. Fifthly, the passing of genetic information is not deterministic
but random in its very nature, thanks to which there may appear genetic
novelties. This last fact is vital from the point of view of evolution the-
ory because it explains the way in which mutation appears on the micro-
biological level.

The view that genetic information is of a linguistic character is only
too tempting. Indeed, it is very often that we can see it treated as a lan-
guage. And thus, we can speak about alphabets, words, syntax, codes and
encoding, or about translation (in the sense of transfer from the genetic
language into another one); this is done especially by representatives of bio-
semantics, who – in the genetic information – detect a semantic dimension
or, at least, its germs. Such an approach is, however, very debatable (com-
pare the discussion in [Kay, 2000; Sarkar, 1996] which rejects the notion of
genetic code, but this solution seems too radical). In true fact, technical
elaborations of genetics avoid comparing the genetic code with a language
(see, for example, [Klug et al., 2006]). Independent of the applied language,
for instance, some authors write about ‘words’ as components of the ge-
netic code, surely using quotation marks to indicate a certain metaphorical
investing of genetic information with the linguistic dimension, while others
do so about words; we can easily find here the problem of relation of phys-
ical information as something quantitative to the semantic information as
qualitative. The mathematical theory of information concerns the former,
and only indirectly relates to the latter. Shannon’s well-known statement
on the capacity of channels of transmitting information and limiting so-
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called information noise has sense only with reference to its quantitative
understanding. The genetic information is a kind of physical, not semantic
information. On the other hand, processing the former, i.e. quantitative, into
the other, i.e. qualitative, is a notorious fact; for example, reading a book
– as long as we understand the language in which it has been written, we
rapidly process the physical stimulus into semantic units, i.e. such that we
understand them according to their linguistic sense. For the time being we
do not know the mechanism of this transformation and it makes the biggest
anthropological puzzle (see [Hurford, 2007]). Perhaps, the properties of the
genetic information lie at the foundations of, so to say, the semiotization of
mental processes, yet this is a fairly speculative assumption from the bio-
logical assumptions, though one could consider it as philosophically justified
to some degree.

At first sight, if the genetic information were a language in the full sense
or even if only in an approximate one, we could look for the genesis of logical
competence directly on the microbiological level. After all, the properties of
the genetic code, whatever it is, stand far from those that can serve to de-
fine operation Cn. Nevertheless, these properties can be tied to logic in their
understanding of today. Before I pass on to essay to show this relation, I
will draw attention to certain theoretical questions. Kazimierz Ajdukiewicz
(see [Ajdukiewicz, 1955]) divided inferences into deductive, increasing prob-
ability (inductive in a broad sense), and logically worthless. The first are
based on operation Cn which holds between the premises and the conclusion
(the conclusion results logically from the accepted assumptions), the second
ones increase the probability of the conclusion on the basis of the premises,
and the third ones are devoid of any logical relation between the links, e.g.
“if Krakow lies on the Vistula, then Paris is situated in France”. Logic, in
this context is understood in a broader way than at the beginning of the
paper, since it includes also induction rules. We can, too, extend respec-
tively the notion of logical competence, still I do not wish to consider such
a generalization. Treating the thing from the information point of view (see
above), while deduction does not broaden the information included in the
premises (although it does not allow it to be lost), the conclusion is false,
which disperses (in the sense of entropy) the information acquired earlier;
whereas logical inference that is worthless is redundant from the information
point of view.

The infallibility of the rules generated by operation Cn derives from the
fact that they correspond to theorems of logic, i.e. to sentences (formulas)
that are true in all circumstances. One of the axioms of probability calculus
is the assumption that there exists an event whose probability obtains the

234



Naturalism and the Genesis of Logic

value 1 (the whole space on which the probability measure is defined con-
stitutes this event). An interesting interpretation of this axiom consists in
acknowledging that it prevents the leveling (dispersing) of probabilities as-
cribed to particular occurrences; that is, subsets of the whole space. In other
words, this axiom saves the differences in the amount of information which
condition its flow. Thus, it performs the anti-entropic function, i.e. blocks
dispersion of information: it protects it in this way. Operation Cn can be
understood also as an instrument for protecting information from its dis-
persion, since it prevents formation of false information on the basis of true
information. As I have already mentioned, the logic of induction is debat-
able, yet – on the other hand – nobody contradicts the fact that at least
certain induction rules, e.g. those of statistical induction, are rational. It is
true that they do not exclude dispersion of information, but still are able to
somehow normalize its flow and in this way save or control it. Inferences that
are logically worthless do not play any role in the processes of information
protection.

Saving information (obviously it is not problems of a legal or moral
nature that I mean here) both physical and semantic, appears as a vital
function of all organisms which operate with a given type of code. Since
we treat operation Cn as an information-protective instrument, saving the
possessed content (in the sense of information content, not necessarily mean-
ingful in the sense of intensional semantics), then – at least from the nat-
uralistic point of view – the logical consequence has a biological rooting.
With relation to this, I will return to the properties of the genetic codes
and genetic information mentioned earlier, this time in the metalogical
context. Here are the features of the genetic code (see [Klug et al., 2006,
p. 307]; I keep abstracting from the nature of elements of the code with
one exception only amino acids due to the comprehensiveness of certain
formulations):
1. genetic code is written in a linear form;
2. if we assume that mRNA consists of ‘words’, then each such word has

three ‘letters’;
3. each three-letter group, that is, the codon, determines another element

in the form of an amino acid;
4. if the code is unambiguous, it delineates one and only one amino acid;
5. if the code is degenerated, the given amino acid can be determined by

more codons;
6. the genetic code includes the initial signal and the terminal one in the

form of codons initiating and finalizing the processes of passing the
genetic information;
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7. the genetic code does not contain punctuation characters (commas);
8. elements of the genetic code do not overlap, that is, a concrete ‘letter’

can be a part of only one codon;
9. the genetic code is nearly universal, i.e. apart from a few exceptions,

the same ‘dictionary’ of encoding serves all viruses, procariotic, and
eucariotic organisms.

Completing the remarks offered earlier, I would like to add (see [Klug et al.,
2006, pp. 264–265]) that replication of DNA (forming two new strings of the
primary helix) can be semi-conservative (each replicated particle of DNA has
one old string and one new one), conservative (the parent string is conserved
as a result of synthesis in two new strings), or dispersed (old strings are dis-
persed in new ones). The most frequent is the case of semi-conservation.
Nevertheless, the genetic information that exists earlier is inherited by he-
lixes formed by way of replication.

It follows from properties 1–9 that the ‘syntax’ of the genetic code is
rigorous. It is based on a detailed specification of simple elements (‘letters’)
and their combinations (codons). The lack of commas points to the fact
that it is a series of concatenations. A code is unambiguous inasmuch as it
is not degenerated. This property can be likened to syntactic correctness,
while degeneration to a lack of it. ‘Letters’ are atoms in the same sense as
a simple expression, which is non-decomposable any further. Transformation
of a codon into an amino acid is a function, unless the code is degenerate.
The beginning and the end of the procedure realized by the code is clearly
marked with separate ‘words’. I have marked some expressions with letters
so as not to suggest treating the code as a language. The linguistics-oriented
terminology could easily be avoided through speaking about configurations
and their elements. Genetic codes treated in this manner can be and are
similar to electric nets or cellural automata, which – as a matter of fact –
is underlined by the above-mentioned modeling of genetic phenomena. The
essence of things relies on the idea that the outline ‘syntax’ is of an effective
character and is trivially recursive, since operations realized by the codes
are of a terminal character.

Although there hold similarities between the structure of the genetic
code and the syntax of formal languages, there is no reason why we should
see the genetic concatenation as a result of the action of operation Cn.
On the other hand, if we were to consider the configuration determined
by codons, it is clopen in the topological sense, which is also character-
istic of the space of sentences on which the logical consequence operates
together with non-deductive rules of organizing semantic information. The
semi-conservative character of the most typical replication of DNA corre-

236



Naturalism and the Genesis of Logic

sponds to this. Closing of a part of this space protects the information accu-
mulated earlier, and the fact that it includes also open subsets secures the
appearance of new information. Sometimes this is said (see [Kauffman, 1993,
p. 2003, pp. 447–449]) about channeling of processes of genetic regulation
through extensional (Boolean) functions. Let x be an active element in such
a process, and object (x or y) a regulated element. Then, the object (x or y)
is also active. The procedure, in this case, is analogous to that applied in
the synthesis of electric networks. In the terminology used in this paper, the
channeling (in the sense of Kauffman) is a partial objective case of logical
consequence. A general conclusion which can be derived from the registered
analogies is as follows: the genetic code is the biological foundation of logi-
cal competence. Since speculation becomes a philosopher, the thing can be
framed as follows: topological or proto-topological properties of the ‘genetic
space’ directed the biological evolution in such a direction that it developed
– perhaps by way of relevant mutations, with the appearance of dispositions
to operate with logical consequence.

It is not a feasible thing to establish various vital details. It is not
known when logical competence appeared in its fullest beauty, so to speak,
and what its scope is with reference to other species than ours. Putting it
differently, it is not known whether the logical ability is only granted to hu-
mans, or – maybe – is also available to other species, or even to what extent
real human logical competence corresponds to its abstract image formulated
in logical theory. Perhaps evolution theory could add something relevant in
this matter. It seems, for instance, that species which invest in a lower num-
ber of offspring (birds and mammals) have been ‘forced’ to create stronger
means of protecting genetic information than insects, reptiles and fish, in
which dispersion is compensated with a great number of potential speci-
mens. Be it as it were, a naturalist claims that, to repeat once again, logical
competence has not fallen from another world but came into being on the
planet Earth. This makes, similarly to other mental operations, a realization
of dispositions determined by the genetic equipment and the course of the
evolution. If it is inborn, then it is phylogenically, not ontogenically. Inde-
pendently of how the proposed approach is general, it somehow contributes
to (in order to use Andrzej Grzegorczyk’s phrase; see [Grzegorczyk, 1997])
understanding logic as a human affair. If, as Grzegorczyk claims, logic dis-
plays human rationality, both, logic and rationality, are deeply rooted in
our biological equipment.
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Urszula Wybraniec-Skardowska

ON LIFE ACCORDING TO THE LOGIC OF GIFT, TOIL,
AND CHALLENGES

Abstract. The present essay deals with certain questions in the field of hu-
manistic philosophy, ethics and axiology, discussed in the light of still newer
and newer challenges of our changing times. It highlights the significant role
of Professor Andrzej Grzegorczyk in solving and overcoming problems encoun-
tered in human life, which is based on his natural logic and incessant efforts
aimed at preservation of fundamental moral values, as well as at shaping the
principles of individual and social life. The views held by Andrzej Grzegorczyk,
which are outlined in the work, form a certain rationalistic vision of the world
and mankind.

Life is a trial, an examination and a judgement.
A. Grzegorczyk: The Philosophy of the Times of Trial

Speaking about life, we mean here human existence: man’s life and
activity in changing times and social, political, and cultural conditionings.
Each human life is a peculiar gift, a gift of nature, or – to people who believe
in God – a gift obtained from God. It is unrepeatable, a fundamental value.1

A life, thus, is something of great value, sincerity and uniqueness, and as
such has for centuries now made a subject of philosophical enquiry into the
following: How to perceive this value of life? How to realize it? How to live
so as the life should be invested with a sense that marks out a value in
itself? What individual or general aims delineate the sense of life? They are
questions which pertain to philosophy and which reach the very roots of
humanity themselves.

These questions are not only an object of interest on the part of broadly
understood philosophical anthropology (theoretical and practical), as well as
the philosophy of human being, axiology, ethics, and religion. After all, they
touch each of us, especially when we ponder the sense of all our deeds or ac-
tions to date. And in each human action and endeavor there are intellectual-

1 This is declared by The Constitution of the Republic of Poland, art. 38.
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cognitive elements and those desire-based ones, connected with our will,
which are coupled, so to say, and penetrate and complement each other.
In each of us, there functions both a logic that stems from our mind and
a desire that is not always rational. This is the essence of human nature
and its material and spiritual needs. An individual or collective life which
is devoid of contact with the leading logic of reason, cut off from reality,
from the truth about the world, forfeits its essential sense. A practical life,
be it individual or collective, private or public, directed solely towards prag-
matism, inclined towards consumerism and benefit, the ‘logic’ of profit, not
being able to find proper cooperation with intellectual life, forfeits indeed
whatever makes the nature of man as a reasonable creature that can:
• think logically,
• act rightly in compliance with universal ethical principles, as well as
• look for the truth.

Should we think that the highest values of life are the vital forces in it, the
vital instinct, and the want of benefit, instead of a reasonable will?

All people long for unrestricted development of their natural potential,
and are willing to delight in beauty, long for happiness. While some have
the knowledge of where and how to look for these values, others are not
able to direct their lives to achieve them. Raising awareness in people so
that they could possess these values is connected with realization of what
ancient Greeks called logos. Socrates, the founder of dialectics, understood
it as the art of sober discussion or verbal argumentation, saw the sense of his
life in comprehending and materializing the logos. Plato and Aristotle also
referred to logos, the latter, the founder of formal logic – as did Marcus Au-
relius, a stoic, in his famous Meditations. The last regarded life as a string of
duties, and their fulfillment as the road to happiness. “You can always live
a happy life if you follow the right road and want to think and do well,” he
writes in his Meditations [1984, Księga V 34]. Such a life is connected with
toil, yet also is one lived in compliance with nature – as Marcus Aurelius
[1984, Księga I 17] states, accepting this fundamental principle which consti-
tutes the supreme good for stoics. Meditations is a praise of mind, the logos
which penetrates the whole Universe; it is a course-book on the art of living.
And even though there is no mention in it of logic, whose beginnings – in
today’s understanding of it – are sought for just in stoics, the considerations
included in it display the beauty of Aurelius’ personal natural logic. We will
soon make reference to the notion of the natural logic of man. The Greek
word logos, from which – etymologically – the contemporary word logic de-
rives, has a number of meanings. For our purpose, however, we shall adapt
its meanings by which it denotes mind that directs the will of man, thought
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that is a creation of the mind, as well as word that is a representation of
thought so that the latter could be transferred in communication-cognition
processes; the word also means science. Without entering into a discussion
concerning the history of logic as a domain of science, nor reminding of
what scientific logic deals with, let us only draw attention to the fact that
it did grow out of the natural logic of man.2 Natural logic is unquestion-
ably a feature of human beings. It is also called inborn or innate logic. It
constitutes the basis of human life logic. It can also be called the gift logic
of nature or the Creator, since it is a natural disposition of the mind of
each human being, which is linked to the nature of homo sapiens – the ca-
pability of correct and reliable thinking and reasoning without knowledge
of the laws that govern this correctness, the ability to utter true sentences
without realizing the fact that proving their truthfulness is possible just
thanks to this logic. Does natural logic satisfy the needs of our everyday
lives and actions? Or is the knowledge of logic as science indispensable?
In a regular life, common, instinctive logical effectiveness – natural logic –
does suffice very often. There are common people who are not familiar with
scientific logic, yet whose reasoning is correct, sometimes even surpassing
that of those who were formally learning logic. There are people whose in-
nate logic is developed in a peculiar way, for whom this inborn ability of
their mind is a special gift. We shall call it here gift logic. It is typical of
geniuses or those displaying unique intellectual powers. Their lives are of-
ten marked with toil and drudgery, intellectual effort, related to satisfying
spiritual, non-material needs. There are, among them, individuals whose
creative work is dedicated to a special service done to others and society as
a whole, for whom the sense of life means rising above their regular duties
and problems, recognizing challenges, following the challenges of life and of
the changing times in which they happen to live. Their logics, talents, toils
and challenges are marked with their belief in the mind which makes sense
of their lives and, moreover, are what I would like to call the logic of gift,
toil and challenges. Life, according to this logic, is determined by the pop-
ularly accepted universal values: Truth, Good, and Beauty. They are what
builds up life, investing it somehow with a shape, setting goals, assigning
new tasks and challenges in the transforming world, contemporarily domi-
nated by money and socioeconomic as well as religious conflicts. Their lives
become then a gift of themselves. They pay off the debt of the gift of living.
The first logicians made references to natural logic in order to codify the
knowledge about what was merely instinctive or not made conscious; they

2 See: [Kowalewski, 1959, pp. 20 and 21].
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endeavoured to find general rules governing the mind in the form of scientific
laws. Scientific logic arose on the basis of the so-called fundamental laws of
thinking: the law of contradiction, the law of identity, the law of excluded
middle; until the 19th century it had been regarded as part of cognitive
psychology, as a science establishing its laws as inductive generalization of
laws governing the mind. Abandoning of the trend – called psychologism
– followed in the 20th century. The anti-psychologism of the 20th century
assumed that the laws of logic are objective as they say not about how
the mind works by reasoning, but how it should work properly. These two
currents, in our century, seem not so much to compete with as complement
each other. Scientific logic as a theoretical science cannot be torn away from
life. Throughout all the years of its existence and development it has always
been considered to be a tool (Greek: organon; Aristotle’s logical works were
collected and entitled Organon). Logic was, then, and still is of an instru-
mental nature, utility oriented in relation to other domains of science and
the needs of living and man. In this sense, logic is a universal science of
a service rendering character, which, on the one hand, provides the basis
of each science, while on the other it proves useful in each walk of life and
reality. It serves, especially, the needs of linguistics, and computer science
– Artificial Intelligence and mathematics (deduction systems). It is of value
to everyone who wishes to correctly, clearly, and precisely express thoughts,
think and reason in a correct manner, seeing that through deepening both
natural logic and the acquired one in practice it makes it possible to avoid
making mistakes in various situations of life, including both logical language
errors and those of reasoning. It allows improving innate logical abilities:
• perfecting the usage of language for communication-cognition purposes,
• setting appropriate forms of reasoning against erroneous ones,
• working out skills of independent, correct, and at the same time critical

thinking, and justifying theorems.
Thus, logic, in the broadest aspect, is to serve human beings. Practiced

professionally, in the spirit of services rendered to man, it fulfills a glori-
ous role – it testifies to the appreciation of the dignity of human beings
and their intellect which needs cultivating and ‘rearing’. A crisis of mental
culture is undoubtedly related to a crisis of logical culture of society. The
life logic of man and of the community the former lives in, can be shaped
only by perfecting logical skills, both innate and the ones acquired through
life experience. Masters of logic are indeed only those logicians and thinkers
who – on the basis of their logic of gift, toil, and challenges – have not cut
off, as scholars their contacts with reality and people, making their activity
a peculiar service to man and society.
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Not many thinkers have managed to achieve the goals which they set
earlier already in their lifetimes, only a few have been acknowledged to be
celebrities already during their lifetimes, owing to their published works and
personal activity, as well as their force of exerting an influence on society.
Consequently, those who have managed to gain recognition not only be-
cause of their output, but due to the attitude assumed in their lives and
a peculiar kind of service rendered to people and society, ought to be val-
ued in a special way. The unceasing, multi-directional writer’s activity of
Andrzej Grzegorczyk,3 who writes in continuation of the rationalistic tra-
ditions of the Lvov-Warsaw School, constantly evolving, and addressed to
all people capable of logical thinking, an activity in which not only vital
scientific problems of mathematical logic, philosophy, and ethics, but also
important views of a typical life-related nature have been raised in a clear
and transparent way, the views making a unique message and moral duty
towards society as they are marked out by the independence of expressing
one’s own opinions in the face of changing totalitarian systems and a va-
riety of political trends, offers a challenge to all those for whom life makes
a truly unrepeatable value and provides a sense of fulfillment at the same
time. The answers to the questions: How to understand this challenge of
life? How to realize its values in changing times, full of conflicts, threats,
and in the light of various socio-political conditions? can be found in many
of Andrzej Grzegorczyk’s publications in the fields of humanistic philosophy,
ethics, and axiology. I shall limit myself to referring to a few of them which
are connected with the subject matter of this essay, showing a particular
dimension of the intellectual life of their author, according to principles
of certain logical order that delineate the creative, uncommon activity of
a man of science.4

A. Grzegorczyk writes about the exceptionality of human life in the
course of history: “[...] each life in each epoch can be called a time of trial”.
We read the words in the Preface to his book Filozofia czasu próby (The
Philosophy of the Time of Trial) [1979],5 which – following a few failed at-
tempts to have it published in Poland – came out in Paris in 1979, already

3 The characteristics of this activity are included in the work by S. Krajewski and
J. Woleński [2008].
4 I omit in this way, in particular, the well-known achievements of A. Grzegorczyk in

the field of mathematical logic.
5 The motto of this essay comes from the last sentence of the book. The quotes of

Andrzej Grzegorczyk’s utterances will be a free translation from the Polish language.
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in the time of declining communism. The work contains considerations that
are a bold answer to contemporary worldwide and human problems related
to the value and sense of life, and – simultaneously – makes an appeal to
every man, recommending to him to form certain moral attitudes and re-
spect certain principles of each individual life, based on one’s own effort
and honesty, criticism, respect for every man, and propagation of truth. By
advocating the indeterminism of human fate, the author opposes Marxist
ideology, and – as a follower of the non-violence movement – all forms of
violence and tactics for subordinating society. This is connected with a dis-
play of some encumbrance of life in general, and life as a fight for justice
and a new, better tomorrow. Stressing the significance of rational thinking
and the cognitive role of science in the rational search for, among others,
solving conflicts and displaying the world of human values, A. Grzegorczyk
points also to the role of science to serve the whole of society. From people of
science, one can expect a proper reaction to problems of the world. Shaping
life attitudes in the form in which life has been offered to us, with all the
duties which it imposes, with all hardships and misfortunes it brings, is –
as the author writes – a basic quality that characterizes man’s attitude to-
wards the world, which we will count on. He expresses his personal attitude
towards fate in the following manner,

The philosophical image of man’s fate and the essence of humanity can be
thus perceived as a certain personal call to realize the ideal of humanity. Man,
contrary to animals, is a creative being, able to actively change the condi-
tions of his existence and his own lifestyle. Events of life can be perceived
not only as something that touches us and what we suffer from, but also as
something that sets a goal and in this way invests our existence with a sense,
as something that constitutes a call and a challenge to make an effort and
to fight. Indeed, the greatness of man consists in the fact that he is able to
creatively react to his own fate. The metaphysical basis of the creativity is
human metaphysical freedom. [...] Man always has the possibility of making
a choice. [...] As we are granted this mysterious freedom of decision, it seems
proper to treat it as a chance, a call for investing our lives with a deeper sense,
a certain value. [Grzegorczyk, 1979, p. 128]

Further on, we can read, “[...] as long as we are ready to fully accept our
existence, if we accept reality as it is given to us, [...] then we will always
find a good number of tasks,” [Grzegorczyk, 1979, p. 133] “A hard life, full
of tasks, becomes a trial and a judgment to us” [Grzegorczyk, 1979, p. 134].
Professor Grzegorczyk calls this attitude of acceptance of one’s own exis-
tence as “humility towards reality”. “The world is given to us so that in the
sea of man’s toil and pain one could find his own difficult task for himself,
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which – however – does not alter the architecture of this world” [Grzegor-
czyk, 1979, p. 140]. Assuming the attitude of acceptance of reality and exis-
tence means also acceptance of another man like oneself, therefore devoid of
any elements of dominance, violence, subordination, exploitation, but hold-
ing another man in respect (even in a conflict situation), as well as respecting
the existential value of the latter, being concerned for the moral good.

A. Grzegorczyk presents also a globalist vision of social reality and
humanity

which gains a minimal number of conditions necessary for a compatible survival
through a few successive hundreds of years, humanity saved from threatening
cataclysms and driven to the state of stability as regards all the elements of
life which fill with concern [Grzegorczyk, 1979, p. 175].

Such a vision means a transformation of the world and human life through
recognizing extended spiritual needs, influencing people’s spiritual experi-
ences in compliance with the principles of justice and equality, respect for
human and nations’ rights through

abiding by determined forms of life, conscientiousness, dutifulness, not neg-
lecting even the small elements of the order that compose the general order,
[Grzegorczyk, 1979, pp. 180–181]

and also spreading free-from-violence (non-violence)

culture of persuasion, understanding, and – if a need arose – even co-suffering,
patience and coordination, [Grzegorczyk, 1979, p. 183]

as well as anticipating possible conflicts in order to avoid potential hazards.
In this “small utopia” (as the author called it), there is a place for preserv-
ing individual national character and guaranteeing a compatible co-existence
between nations, which consists in mutual helping one another; the concilia-
tory policy allows avoiding misunderstandings and conflicts. Attaining the
above-presented vision is to be possible through common education of tech-
niques of coordinating and anticipating possible conflicts. A. Grzegorczyk
underlines here the importance of the relevant rearing of youth, alterations
in the educational system and the significance of a rational effort connected
with the spread of knowledge and global consciousness; these factors would
lead to realization of the humanistic concept of transforming the social re-
ality and humanity, which is outlined here. A rational effort for the good of
humanity is connected with new tasks permitting us to meet the challenge
posed to humanity. A. Grzegorczyk calls this challenge a challenge to a new
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moral attitude. It can be formulated in the form of the following sentence
[Grzegorczyk, 1979, p. 34]:

Let us share our potentials of survival; let every nation take account of the
desire for survival of other nations.

A positive reaction to this challenge offers also a chance of one’s own survival
that is neither more nor less vital than that of any human being; this is in
compliance with the Christian principle of love for others.

It is not the fight for existence, but emphasizing an all-human moral sense of
uniting with each human being, [Grzegorczyk, 1979, p. 236]

the sense of all-human solidarity, concern for everybody, can eliminate the
situation in which humanity finds itself – catastrophic, full of threats and
adversity. It is not existence that invests life with its sense, A. Grzegorczyk
writes in another place, but evidence of brotherhood [Grzegorczyk, 1979,
p. 227]. A feature of our existence is fairness in survival. This feature of
life is defined by its quality, its realization of moral values. Possibilities of
choosing a path of life and overcoming unexpected circumstances are two
versions of the moral trial of life; the other one is a test of life, our readiness
to serve given ideals.

The course of the sociopolitical events in Poland and Europe at the
turn of the 1980s and the 1990s allowed Professor Grzegorczyk, in his new
book bearing the meaningful title Życie jako wyzwanie (Life as a Chal-
lenge), [1995] to update, deepen, develop, and logically systematize the con-
cept of a vision of the human world and human life which he had presented
15 years earlier, by investing it with the direction of rationalism open to val-
ues towards current problems of life. A logical, penetrating justification of
the rationalistic condition and European Rationalism is contained, in par-
ticular, in another book by A. Grzegorczyk under the title Logic – a Human
Affair [1997], which was published some time later6 than Life as a Chal-
lenge. The book published in Polish, Ukrainian and Russian, is designed for
a wide circle of readers and performs – apart from its scientific function –
also an educational one. It is aimed, among other things, at raising society’s
moral level and eliminating certain negative ethical attitudes popularly ac-
cepted. The book provides not only theoretical knowledge relating to the
very world of values itself, by pointing to their oppositions, but also the

6 The book includes the idea that the desired form of our rationalism should be
rationalism open to spiritual values.
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practical knowledge necessary to realize all-human values such as: Respect
for everybody, Justice, Kindness. Realization of these values, constituting
here the basic element of life, is an action which contributes to forming
valuable, precious, spiritual human experience. A. Grzegorczyk developed
his concept of vision of the human world here with the aid of a creative
construction of notions that serve the purpose of an intellectual search for
a new realization of accepted values and collective behaviours, with close
abiding by requirements of logic, precision of systematization, and clarity
of presentation. The proposition is a creative concept for shaping spiritual
values, as superior to those vital ones, and shows a peculiar gift of the au-
thor, sensitivity to spiritual values, and richness of theoretical and practical
knowledge in various domains of science. It is characterized by the attitude
of rendering services to others. The author follows, at the same time, a spe-
cific logic of toil, which he describes as overcoming different difficulties that
are sometimes hard to foresee, an inner discipline and psychic effort. Here
are a few of the author’s thoughts:

If somebody intends to pass a value to somebody else and this message requires
toiling, then resignation from this toil can be comfortable for the doer, yet it
is harder to interpret it as a service rendered to others,

and further,

Effective serving others usually demands making a serious effort at attention
and concentration to others’ needs. [...] Experiencing the toil of human action
can be regarded as a reflection in the sphere of psyche of a certain fundamental
feature of human existence. [Grzegorczyk, 1997, p. 135]

Thus, realization of the virtues acknowledged to be valuable requires toil.
For a collective life, one that is not suppressed (non-violated) within the
structure of a state (a state as a structure with a higher spiritual degree of
organization) the good of its citizens is valuable. Without toil, intellectual
effort and support from intellectual elites, true social good cannot arise.
With reference to the pathology of social thinking (especially in relation to
German Nazism and Soviet Communism) the sentence written on the cover
of the book under discussion attracts attention. It reads:

Attaining a structure that realizes spiritual values and sustaining it require
a spiritual activity and effort, without which there follows deviation or disin-
tegration.

A. Grzegorczyk means here, in particular, deviations of political totalitarian
structures, sick and unjust, as well as an effort connected with realization of
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universal spiritual values, an effort of perseverance and an uncompromising
attitude in whatever is valuable.

Good cannot arise without an effort. Good depends on a highly organized
social matter. This organization must simply be created by someone. Without
an effort there follows merely a disintegration of highly organized structures,

A. Grzegorczyk [1997, p. 191] asserts very firmly on degeneration of the
structure – as he adds in another place. It is toil that is connected with the
realization of spiritual values, a creative intellectual effort, full of sacrifice,
and morally appropriate spiritual activity, as well as the physical effort and
risk of suffering related with this activity. Not undertaking this effort in
order to realize values, and producing subjectively accepted effects instead
of this realization, leads to cognitive deviation, mendacity, and – in conse-
quence – to deviation of acting. If the deviations penetrate the system of
governing, they become dangerous to free intellectual thinking and to the
creative activity of citizens. Opposing such a situation is always a challenge
to contemporaries. Rational opposing of such a situation can be aided by
a well organized civic debate and propagation of logical culture, therefore
an attitude of criticism towards disseminated ideas, on the basis of a reli-
able observation and analysis of facts, logical argumentation and respect for
others – a spiritual value which ought to be realized straight after satisfying
basic vital needs, and which – in the opinion of the author of the book –
serves the purpose of conciliation.

The proposition of conceptualization of the world and human life, which
is being discussed here, as a certain concept of rationalism open to values,
sets the direction towards looking at human life, especially the author’s own
life, from the perspective of the subject matter of this essay. The individual
character of the axiological vision of the world and human life is reflected in
the very title of the book by A. Grzegorczyk. He believes in the attainability
of the proposed vision and summons us to realize it, and this as early as on
the cover of the book, where we can read the following words:

Let us contribute to that everybody should experience precious states spiri-
tually: learning the truth, respect, justice and understanding shown towards
others, and also acceptance of human fate and belief in its sense.

A significant element of the challenge which life brings along is to A. Grze-
gorczyk – at the same time – meeting every man,

[...] so as to invest the contact with this man with a certain vital sense, [...]
I accept that being put on my way, he poses a challenge to me to create, just
with him, a certain new quality,
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as we can read in the final part of the book. Professor Grzegorczyk, through
his indefatigable intellectual creativity, proves somehow the attainability (at
least to some extent) of his vision of repair-oriented change of the world. In
the light of the transformations which took place at the end of the previ-
ous century and at the beginning of the present one, A. Grzegorczyk draws
attention to the new challenges of contemporary times. He continues his con-
siderations on the challenges and social problems in other publications, too.
In the paper entitled “Czasy i wyzwania” [2002/2003] (Times and chal-
lenges), as a keen and penetrating observer of changes connected with, on
the one hand, new techniques, and on the other, new forms of human ac-
tivity, he also perceives new threats in the countries of this part of Europe
and – primarily – in Poland itself. He draws attention to deviational actions
in achievements of civilization, intensified development of consumption ori-
ented attitudes and also exempting oneself from the inner discipline of truth
and effort for the benefit of shaping universal values. Analyzing well known
cases of violence (occurring not only in the past) and the experience of
history, he concludes that “the created or established tools in which we
often place our trust, do not lead to social good on their own, but require
long-lasting effort, consciousness, constant control from the viewpoint of val-
ues” [Grzegorczyk, 2002/2003, p. 10]. Broadly understood, violence is the
subject matter of challenges for the contemporary young generation, the
young intelligentsia. The moral challenge posed to the young intelligence of
the 21th century is one to cross over what in the Marxist vision was called
determinism, and thus a challenge towards non-determining our will.

In another work, A. Grzegorczyk presents certain guidelines concerning
the challenges of globalization, commonwealth of humanity and development
of dispositions towards forming it, beginning with small communities within
the framework of larger ones, not resigning from the fight for common edu-
cation of moral values, a fight for a commonwealth with moral principles.7

A. Grzegorczyk ties the concern for repairing humanity to underlining the
role of logic and philosophy in educating begun on the lowest levels. He op-
poses all forms of freeing the human mind from the correct logical thinking.
In the paper “Naprawianie świata. Pożytki filozofii” [2010] (Mending of the
world. The advantages of philosophy), he writes:

There is a need, in the present condition of mankind, to rehabilitate the natural
mind which is sincerely searching for the truth about the whole of our human
fate.

7 I mean here the paper “Globalizacja i jej wyzwania” [2009] (Globalization and its
challenges).
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He highlights also that

Thanks to words, grammar, and logic, the human being is able to deliver
general convictions which make the basis of feeling the sense of life.

We owe the gift of logical thinking and broadening of knowledge to the de-
velopment, perfecting, and using of language, which is a special gift, and
drawing from which invests our existence with a sense. The role of logic con-
sists in, among others, fulfilling by language the cognitive-communicative
function. Human speech is a tool to realize the project of all-human soli-
darity, the perseverant realization of accord and cooperation. Challenges of
the last decade have been connected with the growing consumerism-oriented
lifestyle initiated by the progress of civilization and desisting from making
an intellectual effort to the advantage of pleasure and comfort of living.
These challenges are also in opposition to the ‘logic’ of fight and hatred.
For the further intellectual development of each human commonwealth, not
only the European one, it is of paramount importance to apply correct ar-
gumentation: logical argumentation for the benefit of truth in discourse and
public debate. “In the times of commercialization, affecting also the intellec-
tual life, one should defend the basic conditions of truth,” A. Grzegorczyk
writes in his work “Dekalog rozumu” (The Decalogue of the mind). He for-
mulates in it 10 norms relating to the culture of social debate.8 Respecting
them is the fundamental basis of the culture of each real intellectual dis-
cussion, whose aim is to strive for truth or – at least – for working out
a unanimous standpoint on a given issue. They expose critical aspects of
social life and make a peculiar challenge posed to people responsible for the
life of a given community or pretending to a dominance of the common-
wealth. They refer also to people displaying the adaptive group characteris-
tic based on the current economic situation. A. Grzegorczyk’s deontological
‘commandments’ play a peculiar educative function, and this not only with
reference to the young generation. They teach respect for other people’s be-
liefs, respect for those who think differently. Professor Grzegorczyk, in his
coursebook of logic9 and in some texts available to the author of this es-
say, formulates certain suggestions concerning the shaping intellectual and
moral attitudes of human beings, as well as further challenges for the human
condition. I am going to quote, highlight or summarize a few utterances or
texts by A. Grzegorczyk.

8 The work is included in the yearbook of the PTU [Grzegorczyk, 2006/2007].
9 The course-book has not been published yet.
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Knowledge means that we are capable of presenting our arguments in a clear
and precise manner, and that we can understand others’ arguments when they
are clearly and precisely laid out; this knowledge offers all of us a hope for
a more agreeable life, for removing conflicts and eliminating quarrels on the
basis on mutual recognition of basic values [...] In order that justification of
one’s views should play this socially useful role within mankind, the culture
of justifying and the very searching for reasonable justifications and care for
their quality must be propagated within the framework of regular school-based
education of next generations.

A substantial argument must be supported not only by knowledge in the
fields which it covers, but should rest on a foundation provided by logic – the
basis of the structure of knowledge. Logic – in the opinion of A. Grzegorczyk
– should be placed in the very centre of man’s life as the Basic intellectual
discipline of steering the whole of one’s life. This view of A. Grzegorczyk is
exposed already in the title of his earlier book Logic – a Human Affair,10

in which he opts for turning the philosophy of logic towards a certain kind
of psychologism. The very logic itself is conceived in it as the most general
ontology; the laws of logic are about the world, providing knowledge about
the world described here in a reistic style. Knowledge is an ingredient of the
formed human ability to adapt, and adaptation of human individuals which
is understood in a broader way, within the philosophical perspective, means
– as A. Grzegorczyk concludes – Adapting of our abilities to conduct our-
selves to CONDITIONS AND CHALLENGES OF THE WHOLE HUMAN
CONDITION. Logic is, at the same time, one of the significant trends of
the cultural development of mankind, and contributes – as far as Professor
Grzegorczyk sees it – to

Perfecting the skill of language-based describing of the fragment of the reality
which is being studied; that is, perfecting collective knowledge formed
and consolidated by means of the language.

This logic contributes to the enrichment of knowledge and intellectual de-
velopment of world populations.

The whole of deductive formal logic makes a natural stage in the development
of human intellectualism and is a transition from spontaneous steps of the
natural development of cognition to conscious creation of methods of conduct
which imitate and consciously perfect the same steps that the nature of our
life keeps offering us.

10 Op. cit.
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Logic orders simple and trivial steps of thought and imagination, and al-
lows achieving an intellectual construction, whose sense, and significance,
as well as applications, unexpectedly step beyond triviality – adds A. Grze-
gorczyk. Logic is, at first sight, a mine of simple obvious tautological truths,
yet – in the full system of logic – out of tautological truths and with the
help of obvious procedures of proof, one can obtain very intricate theo-
rems which are far from being obvious. This happens so on the basis –
A. Grzegorczyk claims – of the fact that man is capable – by means of
simple tools of thought – of building very complicated constructions. So
as to obtain tautological truths, which are – at the same time – not that
obvious and which render something significant (though they derive from
obvious truths), one needs to repeat the procedures and arrange them in
a very complicated and revealing manner.11 The applied logic makes an im-
portant way of utilizing the possessed cognitive, hence practical abilities,
since – as A. Grzegorczyk states – logic offers a certain useful set of tools
of reasoning, that is:

Logic is a tool for enlarging our cognition of the world by means of thinking
and knowledge already in our possession.

Logic has played and still does its service-rendering role as a tool applied
in different disciplines of knowledge. Today – as Professor Grzegorczyk un-
derlines – almost the whole of collective communication is based on direct
transfer and information technology, whose foundation is a description of
situations established by basic laws of logic relating to conjunction, alter-
nation, and negation. He states that

Today, one can say that the whole civilization of the world is taking part
in an experiment of ordering logical behaviours which regulate our conscious
conduct.

11 I would like to observe that Andrzej Grzegorczyk, through his psychologistic ap-
proach to semantics, applying formal-logical tools, solved in his Logic – a Human Affair
the problem of semantic paradoxes and proposed the system of universal formal syntax, on
the ground of which he gave proof of the Adequacy Theorem for the classical conception of
truth (the proof of this theorem was given in Tarski’s famous work on the notion of truth,
which was translated into many languages). N.b. Grzegorczyk, in his essay Prawdziwość
cecha ważna, łatwa do określenia, trudniejsza do osiągnięcia (Truthfulness – an important
feature, easy to define, more difficult to attain) published in Felieton filozoficzny, most
likely in 2010 (to which, unfortunately, I have had no access) somehow ‘removes the spell’
from Tarski’s definition of truth, showing that it does not go beyond the triviality of
Aristotle’s explication.
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On Life According to the Logic of Gift, Toil, and Challenges

The thought can develop towards different directions. Logic takes care
solely of its correctness. Everybody marks out the direction of their mental
searching for themselves in dependence on their own interests. [...] Neverthe-
less, some substantial coherence of the thought being developed can count into
logical values of human knowledge.

There is a need, then, for a logical mental discipline as well. The knowledge
alone of principles of thinking does not suffice to manage thought and good
activity. There is a need for toil, an effort directed towards the development
of intellect, and logical thinking so that they should have a proper effect,
an influence on the whole of the life of an individual and a community. The
whole effort aimed at understanding the surrounding reality, inquisitiveness
of the truth of the world – the road to reach the truth – does not run
along commonly accepted paths, but it requires the toil of moving step
after step towards discovering the construction of the World. From the above
cited quotations or summaries of Professor A. Grzegorczyk’s works which
have been presented during the few recent months or expressed on different
occasions, there emerges a certain general view advanced by the Professor,
which I can formulate below, using his own words that I found in a letter
sent to me:

In the present situation created by the civilization of the species of homo
sapiens it becomes indispensable to have a very rigorous logical discipline of
thought, without which the whole social life would fall into a complete chaos.

∗
∗ ∗

New times are bringing along still newer and newer technical possibil-
ities, new forms of activity, but also new threats to the intellectual life of
each of us, to the life of the community in which we live, and even to the
whole of mankind. Hence, there are new tasks and new challenges posed to
us, especially to the young intelligentsia. A young man, the young genera-
tion, generally, needs thus a master, a mentor, a guide, somebody who is
wiser than we are, somebody who is able to create a relevant intellectual
atmosphere and – at the same time – encourage us to ponder over philo-
sophical anthropology. Scientific knowledge and knowledge about life, its
sense, about morality, are inseparable components of the intellectual devel-
opment of man and a good life. Competent passing of fundamental values
of life, logical and righteous conduct to new generations, educating, wise
and beautiful reference to the ideals of Paidea, they all make a peculiar
challenge of life – worthy, filled with creative intellectual toil – the life of
Andrzej Grzegorczyk.
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